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Abstract
The nonlinear rheology of a novel 3D hierarchical graphene polymer nanocomposites was investigated in this study. Based on an
isotactic polypropylene, the nanocomposites were prepared using simple melt mixing, which is an industrially relevant and
scalable technique. The novel nanocomposites stand out as having an electrical percolation threshold (≈0.94 wt%) comparable to
solution mixing graphene-based polymer nanocomposites. Their nonlinear flow behavior was investigated in oscillatory shear
via Fourier-transform (FT) rheology and Chebyshev polynomial decomposition. It was shown that in addition to an increase in
the magnitude of nonlinearities with filler concentration, the electrical percolation threshold corresponds to a unique nonlinear
rheological signature. Thus, in dynamic strain sweep tests, the nonlinearities are dependent on the applied angular frequency,
potentially detecting the emergence of a weakly connected network that is being disrupted by the flow. This is valid for both the
third relative higher harmonic from Fourier-transform rheology, I3/1, as well as the third relative viscous, v3/1, Chebyshev
coefficient. The angular frequency dependency comprised non-quadratic scaling in I3/1 with the applied strain amplitude and a
sign change in v3/1. The development of the nonlinear signatures was monitored up to concentrations in the conductor region to
reveal the influence of a more robust percolated network.

Keywords Nonlinear oscillatory shear . Hierachical graphene . Polymer nanocomposites . Percolation

Introduction

Since the early days of polymeric materials, filled systems
remain essential for improving and/or inducing new function-
al properties otherwise unavailable in plastics. For a broad
range of applications, fillers can improve the mechanical per-
formance of the soft matrices, enhance the semi-conductive
and heat transfer properties of otherwise insulating polymers,

improve their gas barrier properties, etc. The development of
novel fillers for polymers remains a perpetual challenge with
e.g. new generations of 2D materials currently being devel-
oped with tailored functionalities (Gupta et al. 2015). These
fillers could completely revolutionize the way to design poly-
mer nanocomposites due to their extraordinary potential (Kim
and Macosko 2008; Kim et al. 2010; Gkourmpis 2014; Paul
and Robeson 2008; Potts et al. 2011). The main reason for this
potential comes from the rich and unique heterostructures cur-
rently being investigated that could allow for the design of
totally new classes of materials with improvedmultifunctional
properties. Of particular importance are conductive anisotrop-
ic fillers (high aspect ratio), such as metal nanowires,
graphene, and carbon nanotubes. Their steadily commercial
introduction over the last 10–15 years is leading a revolution
in polymer nanocomposites. Depending on the type of filler
and the targeted application, the filler concentrations required
can be fairly significant, a typical example being carbon black
composites. This in turn can lead to an increase in the overall
melt viscosity, which can lead to a number of processing dif-
ficulties (Shenoy 1999). Consequently, the potential of
nanofillers incorporated in polymers to achieve high
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conductivity and superior mechanical properties due to their
unique geometry at low or very low concentrations has
attracted enormous scientific and commercial attention.
Therefore, a detailed understanding of the structure-property
relations of these nanocomposites is required. In this frame-
work, a critical aspect for the performance of polymer nano-
composites, especially for their potential commercialization,
is their melt flow properties. Particularly, from rheological
point of view, the flow-field-filler interactions in the presence
of small and large deformations/deformation rates are crucial
for understanding the tailoring of filler concentration, disper-
sion, and morphology to achieve enhanced nanocomposite
properties.

Polymer nanocomposites and percolation

The classification of nanofillers in this publication refers is
based on their dimensionality as categorized by Ashby et al.
(2009). Thus, 0-D nanofillers are defined as having all dimen-
sions at nanoscale (nanoparticles, e.g., PCC, precipitated cal-
cium carbonate; nG, gold nanoparticles), 1-D having one of
the characteristic dimensions not at nanoscale (nanorods,
nanowires, e.g., S/MWCNT, single and multi-walled carbon
nanotubes; (MnO2)NW, manganese dioxide nanowires), 2-D
having only one dimension at nanoscale (nanocoatings and
nanofilms, e.g., G, graphene and its derivatives; incl. rGO,
reduced graphene oxide; GnP, graphite nanoplatelets; nC,
nanoclay), and 3-D with the overall filler dimensions exceed
nanoscale, however, having a filler structure that involves the
presence of features at nanoscale that are determinant for its
reinforcement performance. It should be noted that for regu-
latory purposes, other dimensional categorization schemes
can be used ISO 26824:2013, 1.1 (2013).

The introduction of fillers into a polymer matrix eventually
leads to the creation of a network structure. Its connectivity
and spatial arrangement and the resulting macroscopic effects
can be described by the percolation theory. In all its variations,
percolation theory focuses on critical phenomena that origi-
nate from the spatial arrangement of the given network and
results in sharp transitions in the overall behavior of the sys-
tem of interest Kirkpatrick (1973). Most commonly, percola-
tion can be understood in the context of electrical conductivity
(Gkourmpis 2016) but this is not restrictive. In such systems
as the insulating polymer matrix is loaded with a conductive
filler, the eventually formed network leads to a sharp
insulation-conductor transition (Lux 1993) in accordance with
percolation theory

σel≈σ0 ϕ−ϕcð Þt ð1Þ

with σ0 a pre-exponential factor that is dependent on the con-
ductivity of the filler, the network topology, and the types of
contact resistance. The terms ϕ and ϕc correspond to the filler

concentration and the critical concentration at the transition
(also known as percolation threshold) (Foygel et al. 2005).
The critical exponent t is also conductivity-dependent with
universal values of t ≈ 1.33 and t ≈ 2 for two and three dimen-
sions respectively (Stauffer and Aharony 1987; Sahimi 1994).
Despite the universality of the critical exponent, a wide range
of values as high as t ≈ 10 have been reported (Gkourmpis
2014; Bauhofer and Kovacs 2009; Gkourmpis et al. 2019),
but this divergence can mainly be associated with complex
tunneling transport phenomena (Balberg 1987; Balberg
2009; Grimaldi and Balberg 2006; Johner et al. 2008) without
disregarding more practical limitations such as filler variabil-
ity in terms of production, entanglement, interconnections,
and surface chemistry (Mutiso and Winey 2012).

The percolated network properties are expected to depend
on the type of filler, e.g., some fillers are flexible (CNT)
whereas certain morphological types favor inter-connectivity
compared to others, e.g., 2D vs. 0D nanofillers (Hassanabadi
and Rodrigue 2013). The mechanical response of the filler
network depends also on the concentration, with a weakly
connected network expected at and in the upper vicinity of
the percolation threshold. With increasing filler concentration,
the network connectivity increases thus resulting in a more
structurally persistent network.

Thus far in our discussion, the role of the polymer matrix in
the way the filler organizes has not been considered. Since
percolation theory is in most of its variations an essentially
statistical theory, spatial arrangement and dispersion are driv-
en by the filler’s size and dimensionality. Obviously, such an
approach might be successful on dilute systems but in the case
of polymers, the existence of rich morphologies, extensive
chain connectivity, and significantly higher molecular weights
and viscosities provide significant limitations. The introduc-
tion of even simple fillers like carbon black in a polymer
matrix has the potential to lead to significant agglomeration
due to the inability of the filler to disperse in a totally random
manner. The main mechanism behind the extensive agglom-
eration can be traced in the existence of weak attractive inter-
actions between the fillers (Grimaldi and Balberg 2006), and
the effect can be significantly augmented when using fillers
that can reach dimensions up to several micrometers (Alig
et al. 2012). In this picture, filler-filler, filler-polymer, and
polymer-polymer interactions play a vital role, and polymer
mobility is of paramount importance for the facilitation of the
local and long range arrangements of the filler in the matrix
(Pötschke et al. 2004). With the term polymer mobility, we
refer to all the length scales associated with a polymer, ranging
from the local motion and spatial segmental arrangements as
seen by the chain conformation to the Rouse regime and chain
reptation. Rheologically, network and dispersion properties
have been typically assigned to the slope of the storage mod-
ulus G′ in the terminal regime at percolation for very low
angular frequencies. Generally, it is considered that the stress
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response at small strains is the result of percolated particle
network, whereas the large strain behavior is determined by
the polymer chain dynamics (Senses and Akcora 2013).

Nonlinear oscillatory shear analysis

Nonlinear oscillatory shear analysis via Fourier-transform rhe-
ology (FT-Rheology) and large amplitude oscillatory shear
(LAOS) is an emerging framework for the analysis of nonlin-
ear effects in complex fluids. The main arguments for the
analysis are the increased sensitivities compared to linear vis-
coelastic measurements (van Dusschoten and Wilhelm 2001;
Hyun et al. 2011) and their potential to reveal material re-
sponse features not observable in linear viscoelastic measure-
ments (Ewoldt et al. 2008; Hyun et al. 2011). The basic non-
linear parameters and definitions necessary for the interpreta-
tion of experimental data are outlined here. Detailed descrip-
tions of the nonlinear analyses employed can be found else-
where, e.g., see Wilhelm (2002), Ewoldt et al. (2008), and
Hyun et al. (2011).

In linear viscoelastic (strain-controlled) oscillatory shear
tests, a sinusoidal strain input, γ(t) = γ0 sin (ωt), results in a
sinusoidal shear stress output, σ12 = σ0 sin (ωt + δ), shifted
with the phase angle δ, where γ0 and ω are the imposed strain
amplitude and angular frequency. The shear rate can therefore
be expressed as γ ̇ tð Þ ¼ γ0ωcos ωtð Þ, with γ ̇0 ¼ γ0ω as the
shear rate amplitude. The Fourier spectrum of the shear stress,
Σ12, therefore contains exclusively the fundamental intensity
I1 of the imposed excitation, ω/ωi = 1, Fig. 1a. A nonlinear
viscoelastic shear stress response will in contrast be non-sinu-
soidal/distorted and the corresponding Fourier spectrum will
contain higher harmonics, In, in addition to I1, Fig. 1b. By
comparing the shear stress, σ12, expressed from a Taylor series
expansion of the shear viscosity, η γ ̇Þð , in dynamic oscillatory
shear flow, to a corresponding Fourier series, combined with
symmetry arguments, the time-dependent shear stress can be
expressed as (Wilhelm et al. 1998; Hyun et al. 2011; Naue
et al. 2018):

ð2Þ
where I1, I3, I5... are the intensities of the fundamental
applied angular frequency, ω0, and its higher (odd) har-
monics. Thus, the higher harmonics can be used to quan-
tify the nonlinear material response. The most basic param-
eter is the third relative higher harmonic, I3/I1 = I3/1, as it
contains the dominant nonlinear contribution. The varia-
tion of I3/1 during a strain sweep test for a typical polymer-
ic mate r ia l exempl i f ied by the mat r ix polymer
(polypropylene) used in this study is presented in Fig. 1c.

At small strain amplitudes (SAOS, small amplitude oscil-
latory shear), the measured signal corresponds to instru-
mentation noise and indicates the sensitivity limits of the
torque sensor. At a critical shear strain amplitude, the non-
linearities become detectable and increase with I3=1∝γ20,
region called medium amplitude oscillatory shear
(MAOS) or intrinsic large amplitude oscillatory shear
([LAOS]). Based on the quadratic I3/1 scaling in MAOS,
the Q-parameter can be defined as nonlinear material pa-
rameter from FT-Rheology (Hyun and Wilhelm 2009):
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Fig. 1 Examples of a linear and b nonlinear shear stress response and
corresponding Fourier spectra, and c dynamic strain sweep test
comparing the dynamic moduli, G′ and G′′ and the third relative higher
harmonic, I3 / 1

Rheol Acta



Q≡
I3=1
γ20

ð3Þ

The large amplitude oscillatory shear regime (LAOS) is
reached when the quadratic scaling with the strain amplitude
is lost.

To attempt to gain a physical insight into material nonlinear
behavior, the total stress can be decomposed into elastic and
viscous components using Chebyshev polynomials as
(Ewoldt et al. 2008):

σ12 t;ω; γ0ð Þ ¼ σe γ tð Þð Þ þ σvðγ ̇ tð ÞÞ ¼
¼ γ0∑eiT i γ=γ0ð Þ þ γ0ω∑viT i γ ̇= γ0˙ Þð

ð4Þ

where Tn is the nth-order Chebyshev polynomial of the first
kind, and ei and vi are the elastic and respectively viscous
Chebyshev coefficients. A visual inspection of the nonlinear
response can be readily performed using elastic and viscous
Lissajous-Bowditch diagrams, Fig. 2. In the viscous and elas-
tic Lissajous-Bowditch (LB) representations, the outer closed
trajectories represent σ(t)/σmax vs. γ(t)/γ0 and σ(t)/σmax vs.
γ ̇ tð Þ=γ0̇, respectively. The red/blue lines represent the total
elastic/viscous stresses, i.e., σe/σmax vs. γ(t)/γ0 and σv(t)/σmax
vs. γ ̇ tð Þ=γ0̇, respectively. A linear viscoelastic response is thus
represented by elliptic diagrams (the black lines in Fig. 2).
Any deviations therefrom signify a nonlinear viscoelastic ma-
terial response (light gray lines in Fig. 2). Based on the LB
diagrams, two elastic and viscous material nonlinear parame-
ters can be thus defined (Ewoldt et al. 2008) as

G
0
M≡

dσ
dγ

����
γ¼0

¼ e1−3e3 þ… ð5Þ

G
0
L≡

σ
γ

����
γ¼�γ0

¼ e1 þ e3 þ… ð6Þ

η
0
M≡

dσ
dγ ̇

j
γ ̇¼0

¼ v1−3v3 þ… ð7Þ

η
0
L≡

σ
γ ̇
j
γ ̇¼�γ ̇0̇

¼ v1 þ v3 þ… ð8Þ

representing the tangent slopes at zero strain/rate (•M) and
secants at maximum strain/rate (•L), see Fig. 2. Thus, in the
limit of linear viscoelasticity, the nonlinear elastic and viscous
moduli are identical to the linear viscoelastic correspondents,
i.e., G

0
M ¼ G

0
L ¼ G

0
ωð Þ and η

0
M ¼ η

0
L ¼ η

0
ωð Þ, respectively.

Using the relationship between the defined nonlinear viscous
and elastic moduli in (5)–(Dealy and Wissbrun 1999), the
distortions in the LB diagrams can be described using the sign
of elastic and viscous Chebyshev coefficients as (Ewoldt and
Bharadwaj 2013):

e1 > 0 average elastic stiffening driven by
e3 > 0 large instantaneous strains
e3 < 0 large instantaneous rates-of-strain
e1 < 0 average elastic softening driven by
e3 > 0 large instantaneous rates-of-strain
e3 < 0 large instantaneous strains
v1 > 0 average viscous thickening driven by
v3 > 0 large instantaneous rates-of-strain
v3 < 0 large instantaneous strains
v1 < 0 average viscous thinning driven by
v3 > 0 large instantaneous strains
v3 < 0 large instantaneous rates-of-strain

A similar interpretation can be assigned to the strain-
stiffening (S) and shear thickening (T) dimensionless ratios
(Ewoldt et al. 2008):

S≡
G

0
L−G

0
M

G
0
L

ð9Þ

T≡
η
0
L−η

0
M

η0
L

ð10Þ

In this case S > 0 indicates intracycle strain-stiffening, S < 0
intracycle strain-softening, T > 0 intracycle shear thickening,
and T < 0 intracycle shear thinning.

Nonlinear rheology of polymer nanocomposites

Known nonlinear viscoelastic properties of nanofilled polymeric
systems in the nonlinear oscillatory shear analysis framework
outlined in the “Nonlinear oscillatory shear analysis” section
are summarized in Table 1. The scientific studies are sorted by
nanoparticle dimensionality and genericmolecular topology. The
literature survey is limited to thermoplastic nanocomposites test-
ed in standard rotational rheometry. However, it should be noted
that FT-Rheology has been applied to polymer composites and

/ 0

/ 0

G'M
G'L

(a)

/ 0

/ 0

'M
'L

. .

(b)

Fig. 2 Examples of linear (black line) and nonlinear (gray line) a elastic
and b viscous Lissajous-Bowditch diagrams and the defined associated
moduli
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rubber-based composites and nanocomposites, e.g., see Leblanc
(2006a, b) and Schwab et al. (2016). The range of polymer-
nanofiller combinations cited in Table 1 reflects systems that
generally provide good dispersion properties. Thus, there is a
prevalence for 1D and 2D nanofillers combined mainly with
linear/short chain branched (L/SCB) polymers. Particulate
nanofillers, 0D, due to their morphological limitations in forming
networks, are considered for comparison (Lim et al. 2013).

Most studies focused on FT-Rheology and it is generally
agreed that percolation thresholds can be detected with in-
creased sensitivity in FT-Rheology compared to linear visco-
elastic oscillatory tests. This has been shown for e.g. (L/SCB)/
1D (Lim et al. 2013; Ahirwal et al. 2014; Hassanabadi et al.
2014) and (L/SCB)/2D (Hyun et al. 2012; Hassanabadi et al.
2014; Kádár et al. 2017; Gaska et al. 2017). The assessment is
generally based on an increase in the magnitude of I3/1, often
quantified via the Q-parameter. Exceptions are 0D nanofiller-
based systems, e.g., (L/SCB)/0D (Lim et al. 2013), for which

the percolation threshold was not reached due to the particle
shape (Knauert et al. 2007; Hassanabadi and Rodrigue 2013).
A relative decrease in Q0 with increasing filler content before
the percolation threshold has also been reported (Ahirwal et al.
2014). The material nonlinear response as quantified by I3/1
has been shown to be sensitive to the filler dimensionality
(Lim et al. 2013; Hassanabadi et al. 2014) and to the degree
of orientation in anisotropic nanofillers as induced through
AC/DC currents (Hyun et al. 2012). In addition, particularly
in L/SCB polymers, a maximum in I3/1, dI3/1/dγ0 = 0, was
apparent in the measuring range for 1D (Lim et al. 2013)
and 2D nanofillers (Lim et al. 2013; Du et al. 2018).
Particular changes in I3/1 scaling have also been reported for
2D (Kádár et al. 2017; Gaska et al. 2017; Gaska and Kádár
2019) and 2D hybrid nanocomposites (Kádár et al. 2017;
Gaska and Kádár 2019), i.e., I3=1∝γn0 with n ≠ 2 in long-
chain branched (LCB) polymers. Overall, most nonlinear ef-
fects in the percolation region were attributed to dispersion

Table 1 Breviary of experimental findings from the scientific literature on polymer-based nanocomposites from nonlinear oscillatory shear experi-
ments categorized by filler dimensionality and matrix molecular topology

0D 1D 2D

L/SCB PCL/PCC (Lim et al. 2013)
I3/1, Q0 weak
dependence on ϕ

LLDPE/SWCNT,MWCNT (Ahirwal et al. 2014)
MAOS: I3/1 ∝ ϕ, ϕ > ϕc
Q0 ∝ 1/ϕ, ϕ < ϕc

PCL/OMMCNT (Lim et al. 2013)
I3/1 ∝ ϕ; ∃

dI3=1
dγ ¼ 0

MAOS: I3=1∝γ20 ≍ð Þ;∀ϕ
NLR ∝ dispersion

PCL/MWCNT (Lim et al. 2013)
I3/1 ∝ ϕ; ∃

dI3=1
dγ ¼ 0

MAOS: I3=1∝γ20 ≍ð Þ;∀ϕ
NLR ∝ dispersion
LA: f(ϕ) sinusoidal → triangular

PDMS/GO,rGO,GO-POSS (Du et al. 2018)
∃ dIn=1

dγ ¼ 0 for PDMS/GO-POSS
S > 0, S ∝ ϕ
rGO: T < 0, T ∝ 1/ϕ
rGO-POSS: T > 0, for ϕ> 4 wt%, 2 < γ0 < 20%
rGO-POSS: T < 0, γ0 > 20%, T ∝ 1/ϕ

PVDF/CNT, NW, CNT-NW (Kamkar et al. 2018)
S, T = f(dispersion)
S > 0, T < 0
SPVDF > SNW> SCNT > SCNT, NW
TPVDF > TNW > TCNT > TCNT −NW

PP,PS/nC (Hyun et al. 2012)
I3/1 ∝ tel, I3=1∝γ20
I3/1 = f(AC/DC, dispersion)
NLR ∝ dispersion

LCB EVA/MWCNT (Hassanabadi et al. 2014)
MAOS: I3=1 ¼ f ϕ; ℓð Þ
I3=1∝γn≠20 , for ϕ > ϕc

EBA/GnP,GnP-CB (Kádár et al. 2017;
Gaska and Kádár 2019)

SAOS→ MAOS: I3=1∝γn0, n = f(composition, ω)
n ≈ 0 for GnP, ϕ > ϕc (ω = 0.6 rad/s)
n ≈ 0.4 for GnP-CB, ϕ ≥ ϕc (ω = 0.6 rad/s)

LDPE/GnP (Gaska et al. 2017; Gaska et al. 2019;
Gaska and Kádár 2019)

SAOS→ MAOS: I3=1∝γn0,
n ≈ 0 for ϕ ≥ ϕc (ω = 1 rad/s)
I3/1 = f(preparation method)

EVA/nC (Hassanabadi et al. 2014)
MAOS: I3=1 ¼ f ϕ; ℓð Þ
I3=1∝γn≠20 , for ϕ > ϕc

Abbreviations: L/SCB, linear/short-chain branched; LCB, long-chain branched;CB, carbon black; EBA, ethylbutyl acrylate; EVA, ethylene vinylacrylate;
GnP, graphene nanoplatelets; GO, graphene oxide; LDPE, low density polyethylene; LLDPE, linear low density polyethylene; MWCNT, multi-walled
carbon nanotubes; nC, nanoclay; OMM, montmorillonite; PCC, precipitated calcium carbonate; PCL, polycaprolactone; PDMS, polydimetylsiloxane;
PS, polystyrene; PP, polypropylene; PVDF, polyvinylidene fluoride; SWCNT, single-walled carbon nanotubes; POSS, polyhedral oligomeric
silsesquioxane; rGO, reduced graphene oxide; (MnO2)NW, manganese dioxide nanowires
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properties (Lim et al. 2013; Hyun et al. 2012; Kamkar et al.
2018; Du et al. 2018). By comparing various filled systems,
including nanofiller dimensionality, a new parameter was pro-
posed (Lim et al. 2013) showing good correlation to how well
a filler is dispersed in a polymer.

Chebyshev stress decomposition analysis has been applied
to (L/SCB)/1D (Kamkar et al. 2018) and (L/SCB)/2D (Du et al.
2018) nanocomposites. Strain-stiffening, S, Eq. (9), and shear
thickening, (T), Eq. (10), ratios have been thus shown to depend
on composition and reinforcement type. S was positive in the
nonlinear region, thus showing increasing strain-stiffening be-
havior with increasing filler concentration. T was shown to be
negative and increased with the addition of fillers (Kamkar et al.
2018) but also strain amplitude dependent (strain sweep) (Du
et al. 2018). Over a critical ϕ within the range of percolation
thresholds estimated, at low strain amplitude T > 0 and at the
high end of γ0 range T < 0. Thus, the behavior changes from
shear thickening to shear thinning, with the shear thinning char-
acter increasing with ϕ in the nonlinear regime.

Present study

In this study, we present an industrially relevant melt mixed
system where a novel 3D hierarchical reduced graphene oxide
(HrGO) filler has been successfully dispersed in isotactic poly-
propylene. Consequently, the electrical percolation threshold
was observed in the vicinity of ϕc ≈ 0.94 wt% and ranks lowest
among similar systems in similar preparation conditions
(Gkourmpis et al. 2019). Such percolation thresholds are com-
parable to graphene-based systems prepared using solution
mixing techniques (Kim andMacosko 2008). The work concen-
trates on establishing a closer understanding of the particular
specific interactions between the filler network and the polymer
matrix in dynamic conditions, in relation to the filler network
formation. This is pursued through the use of nonlinear rheolog-
ical behavior in oscillatory shear. The nonlinear analysis is based
on Fourier-transform rheology and Chebyshev polynomial stress
decomposition.We show that the electrical percolation threshold
corresponds to a unique nonlinear signature whose characteris-
tics develop with increasing concentration which could poten-
tially provide a clear distinction between the different network
evolutionary mechanisms and the influence of shear thereon.

Materials and experiments

Materials

The polymer matrix used in this study was a commercial iso-
tactic polypropylene (PP) supplied by Borealis AB
(Stenungsund, Sweden). The PP used was highly isotactic (>
90%) having a molecular weight and dispersity index ofMw =
300 kg/mol and Mw/Mn = 8, respectively. As nanofiller, the

present study features a novel type of 3D hierarchical structure
that consists of stacks of 3–5 monolayers (as estimated by the
manufacturer) of reduced graphene oxide (HrGO). Thus, while
overall filler dimensions exceed nanoscale, the filler structure
involves the presence of features at nanoscale level, i.e., the
rGO sheets, and can be thus classified as a 3D nanofiller
(Ashby et al. 2009). We note that the hierarchical structure is
a direct result of the proprietary exfoliation process (Gkourmpis
et al. 2019). The HrGO was produced via a modified
Staudenmaier method (Staudenmaier 1898) and was provided
by Cabot Corporation (Boston, MA, USA). A SEM image of
the filler morphology in the powder state is shown in Fig. 3a.

Sample preparation and testing

The nanocomposites presented in this study were prepared by
means of Brabender batch melt mixer Type W50 driven by a
Brabender Plasticorder (Brabender GmbH, Duisburg,
Germany). The compounding was performed at 210 °C in
two steps (Gkourmpis et al. 2019). In the first step, the poly-
mer was introduced in the mixing chamber and allowed to
melt at 20 rpm for 15 min. Thereafter, the filler was added
and the composite was then mixed for homogenization at
50 rpm for another 15 min. More details concerning the
nanofiller structure, preparation, etching procedures, and the
nanocomposite electrical, thermal, and mechanical perfor-
mance can be found elsewhere (Gkourmpis et al. 2019).
Electrical conductivity measurements evaluating the percola-
tion threshold, ϕc ≈ 0.94 with a critical exponent t = 7.75, are
shown in Fig. 3b (Gkourmpis et al. 2019).

Representative SEM micrographs for the unfilled PP and
the PP/HrGO nanocomposites are shown in Fig. 3b, c. The
microstructural observations of shown composites were car-
ried out on cryo-fractured and chemically etched samples
using a Leo Ultra 55 (Carl Zeiss AB, Oberkochen,
Germany) Scanning Electron Microscope.

Linear and nonlinear oscillatory shear tests were performed
on an Anton Paar MCR702 TwinDrive rheometer (Graz,
Austria) in strain-controlled mode (separate motor-transduc-
er). The frequency sweeps were performed in counter-oscilla-
tion. All tests were performed at 200 °C with a 25-mm plate-
plate geometry and a gap of 1 mm. The nonlinear analysis of
the shear stress output signal was performed in the framework
of Fourier-transform analysis and Chebyshev polynomial de-
composition, as summarized in the “Nonlinear oscillatory
shear analysis” section.

Results and discussion

Linear viscoelastic frequency sweep results are presented for
reference in Fig. 4. The complex viscosity functions, |η∗|, ex-
hibit the expected dependence on concentration, with a

Rheol Acta



Carreay-Yasuda model
Power-law model

0
0.2
0.5
0.8
1.0
1.5
2.0
2.5
3.5
4.0
5.0

 [wt%]

C
om

pl
ex

 v
is

co
si

ty
, |

 
*

103

104

105

106

Angular frequency,  [rad/s]
10 1 1 101 102 103

(a)

0
0.2
0.5
0.8
1.0
1.5
2.0
2.5
3.5
4.0
5.0

 [wt%]

S
to

ra
ge

 m
od

ul
us

,G
'  

[P
a]

102

103

104

105

106

Angular frequency,  [rad/s]
10 1 1 101 102 103

(b)

Fig. 4 Linear viscoelastic
frequency sweeps of 3D
hierarchical reduced graphene
oxide-polypropylene (PP/HrGO)
nanocomposites. a Magnitude of
the complex viscosity, |η∗| and b
storage modulus, G ′

3-5 
monolayers

2 µm

400 nm

(a) (b)

20 µm 2 µm

(c)

100 µm 10 µm

(d)

Fig. 3 a SEM micrograph of the
hierarchical reduced graphene
oxide (HrGO) in powder form
and the associated structure. b
Electrical conductivity as function
of filler loading and the
evaluation of the percolation
threshold using Eq. (1). c SEM
micrographs for PP. d SEM
micrographs for PP-0.5% HrGO

Rheol Acta



significant increase for ϕ > 1 wt%, Fig. 4a. Within the applied
angular frequency range, for ϕ ≤ 2.5 wt%, the viscosity func-
tions can be readily fitted using the Carreau-Yasuda model,

η−η∞ð Þ η0−η∞ð Þ ¼ 1þ λγ̇
� �ah i n−1ð Þ= að Þ

, where η0, ∞ are the

zero- and infinite-shear viscosities, n is the flow index, λ a
characteristic relaxation time, and α the material exponent. A
pronounced increase in viscosity at low shear rates is apparent
at concentrations ϕ > 2.5 wt%, with the power law model,

η ¼ K γ̇
n−1

, where K and n are the consistency and flow be-
havior indices, appropriately describing the shear thinning be-

havior for γ̇ > 10 1/s. This is considered to be indicative of a
yield stress behavior, as strong attractive forces between
nanofillers are known to lead to the formation of structures
that could support a yield stress (Dealy and F. 1999). A similar
qualitative concentration dependence applies to the dynamic
moduli, Fig. 4b. Notably, a storage modulus,G′, plateau in the
limit of low angular frequencies, signaling the presence of an
additional elastic contribution due to filler network formation
is apparent only for concentrations ϕ > 2.5 wt%, in the range
of frequencies investigated. This would suggest a percolation
threshold significantly higher than the threshold determined
from electrical measurements via percolation theory, ϕc ≈
0.94 wt% (Gkourmpis et al. 2019). We note that evidence of
percolation in the terminal region could be evidenced at angu-
lar frequencies below the lower limit investigated. However,
measurements at very low angular frequencies are time con-
suming and an apparent plateau could also be reached due to
e.g. oxidation effects.

The nonlinear material response as expressed by the third
relative higher harmonic, I3/1, from dynamic strain sweep tests
is presented in Fig. 5 for representative filler concentrations. In
the absence of fillers (ϕc = 0), Fig. 5a, the linear-nonlinear
transitions of the PP is as expected for a commercial polydis-
perse polymer (Hyun et al. 2011), with the SAOS region char-
acterized by instrumentation noise, MAOS by I3=1∝γ20, and
the LAOS region beyond. The nonlinear material response
for concentrations up to ϕ = 0.8 wt% is qualitatively similar
to the unfilled polymer, see ϕ < 1 wt% in Fig. 5b. In contrast,
for ϕ = 1 wt%, i.e., electrical percolation threshold, ϕ ≈ ϕ1,
Gkourmpis et al. (2019), a significant change in I3/1 scaling
is observed, Fig. 5c. Thus, the I3/1 scaling to the strain ampli-
tude, γ0, becomes a function of the imposed angular frequen-
cy, ω, i.e., I3=1∝γn0, n = n(ω). Thus, the following scaling ex-

ponents can be approximated: I3=1∝γ0:70 for ω = 0.6 rad/s, I3=1
∝γ1:10 for ω = 1 rad/s. For ω > 1 rad/s, it can be approximated

that I3=1∝γ20 similarly to concentrations below percolation, ϕ
< ϕc. Above the electrical percolation threshold, ϕ = 1.5%,
Fig. 5d, a MAOS scaling similar to the unfilled polymer is
observed, independent of the applied ω. However, nonlinear
material response features that are not present for ϕ < ϕc could
be identified. Namely, at the SAOS-MAOS transition, a new

region can be identified (γ0 ∈ (2, 10)%), where I3/1 ∝ γn, n ≈ 0
for ω < 2 rad/s. In addition, differences in the LAOS region
could also be inferred.

The dependence on the applied angular frequency,ω, and at
percolation, ϕ ≈ ϕc, could signify that the weakly formed net-
work at percolation can be disrupted by the resulting shear
rate. For high ω, I3/1 scaling is similar to the previous concen-
trations before percolation. The conjecture is further rein-
forced by the n ≈ 0 scaling observed for supercritical concen-
tration, ϕ = 1.5 wt%, at low ω. The extrapolation to a n = 2
exponents, e.g., see Fig. 6, is based on solid mathematical
foundations, i.e., see the ratio between I3 and I1 in Eq. 2.
However, in this publication, we suggest that in certain con-
ditions at and above the percolation threshold, the shear stress
output, σ12, contains a contribution of the filler network, not
observable in the linear viscoelastic data but rather amplified
by the use of FT-Rheology. Thus, the scaling exponents of I3/1
should be perceived through the viewpoint of filler network
properties.

Changes in nonlinear I3/1 magnitude can be readily repre-
sented using the Q-parameter, Eq. 3, Hyun and Wilhelm
(2009). This is exclusively based on the quadratic scaling of
I3/1 with γ0 as deduced from Eq. 2 and thus disregards any
possible anomalies at the linear-nonlinear transition. The Q-
parameter variation with strain amplitude at ω = 1 rad/s for all
filler concentrations is shown in Fig. 6a. The data points pre-
sented exclude the “instrumentation noise” as well as any sig-
nificant non-quadratic scaling at the linear-nonlinear transition.
Similarly to the procedure of Lim et al. (2013), theQ-parameter
data was fitted using an equation similar to the Carreau-Yasuda

model, i.e., Q=Q0 ¼ 1þ C1γ0ð ÞC2

h i C3−1ð Þ=C2

, with C1, 2, 3

being the corresponding fitting parameters. Therefrom, the
zero-strain Q-parameter can be extrapolated,
Q0 ¼ limγ0→0 Q γ0ð Þ½ �. The relative zero-strain Q-parameter,
Q0(ϕ)/Q0(ϕ = 0), is shown in Fig. 6b while the errors in esti-
mating the fit parameters are presented in Table S1
(Supplementary information). The electrical percolation thresh-
old, ϕc, is overlaid on the graph. It can thus be stated that in
quantitative terms, Q0(ϕ)/Q0(0) experiences a significant shift
at ϕc = 0.8 wt%, below ϕc.

Based onQ-parameter data interpretation, it can be inferred
that when considering the magnitude of the nonlinear material
response, the relative increase in Q0(ϕ)/Q0(0) below the elec-
trical percolation threshold could signify the detection of a
rheological percolation threshold, meaning sufficient amount
of filler is present to significantly alter molecular chain dy-
namics. This is due to the more gradual nature expected for the
rheological threshold (Münstedt and Starý 2016). It should be
noted that the high t-exponents, t ≈ 7.75, resulted from electri-
cal conductivity measurements for the PP/HrGO nanocom-
posites (Gkourmpis et al. 2019) suggest that the filler network
conducts predominantly via tunneling mechanisms (Balberg
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1998; Gkourmpis 2016). Thus, it can be argued that the nano-
composite experiences an extended percolation threshold over
a wider region, where at a rheological percolation, the chain

mobility is significantly altered. This ultimately leads to the
creation of conditions for tunneling that manifest themselves
via the electrical percolation. It should be here noted that the
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nonlinear detection of the percolation threshold was per-
formed at ω = 1 rad/s, with superior sensitivity compared to
linear viscoelastic dynamic frequency sweeps, in accordance
with similar studies.

To emphasize the shear rate amplitude dependence and the
evolution of the nonlinear material response at the linear-
nonlinear transition in strain sweep tests, the dependence of

I3/1 on the shear stress amplitude γ̇0 at selected concentrations
for ω = 0.6 rad/s is presented in Fig. 7a. The concentration
dependence is illustrated for ω = 0.6 rad/s because it appears
to be most susceptible to the presence of a filler network.
Furthermore, the concentration range is further expanded be-
yond the data in Fig. 5 to capture the evolution of nonlinear-
ities. The scaling indices, n, whereby I3=1∝γn0, identified be-
yond the instrumentation noise/SAOS in Fig. 7a, are summa-
rized in Fig. 7b. As already mentioned in the description of
Fig. 5, the quadratic scaling of I3/1 in the MAOS region is
preserved for concentrations below percolation, i.e., n = 2.
The percolation threshold marks a significant change in scal-
ing, with n ≈ 0.7. Above the percolation point, n ≈ 0 at the
linear-nonlinear transitions (SAOS-MAOS) followed by n ≈
2 for higher strain/shear rate amplitudes. There is concurrently
a decrease in the magnitude of I3/1 compared to ϕc, see also
Fig. 6b. The same scaling is maintained until ϕ = 2.5 wt%
together with an increase in I3/1 magnitude. In contrast, for
ϕ = 3.5 wt%, three successive scaling regions could be iden-
tified, with n ≈ 1.1, n ≈ 0.2 and n ≈ 0.4. At this concentration,
the nanocomposite is estimated to enter the conductor region
of the percolation curve, see Fig. 3b. Similar studies have
shown evidence of a percolated at the linear-nonlinear transi-
tion with similar scaling of nonlinearities (Gaska et al. 2017;
Kádár et al. 2017; Gaska et al. 2019; Gaska and Kádár 2019).
For a LCB/2D nanocomposite (LDPE/GnP)I3=1∝γ≈00 has been
found after SAOS, followed by quadratic scaling (MAOS)
(Gaska et al. 2017; Gaska et al. 2019; Gaska and Kádár
2019). Such scaling behavior could be comparable to PP/

HrGO above ϕc, ϕ ∈ [1.5,2.5]. This could suggest the scaling
is characteristic to the nonlinear dynamic response of a more
robust filler network, i.e., having more connection points. The
robust character of the network for LDPE/GnP could be due to
the higher percolation threshold of the system (11 wt%) as and
due to the morphology of the nanofiller (2D). In contrast, an
important note here valid for the 3D hierarchical filler (HrGO)
is that it can be considered as a “flexible” filler network due to
the absence of physical connections between the individual
graphene sheets, as described in the “Introduction” section.
For a hybrid LCB/(2D,CB) nanocomposite (EBA/GnP,CB),
it was shown that I3=1∝γ0:40 , followed by a MAOS region
(Kádár et al. 2017; Gaska and Kádár 2019). Due to the pres-
ence of CB in the composition, it could be inferred that the
filler network could be more flexible and easy to distort. This
could be a possible scenario for explaining the similarities in
scaling between PP/HrGO and EBA/(GnP,CB), i.e., expo-
nents 0.7 and 0.4, respectively, at percolation as well as why
the EBA-based system reverts to a quadratic scaling at higher
strain/strain rate amplitudes. However, for both the LDPE and
EBA systems mentioned, the discussion disregards the role of
the matrix topology that could influence the nonlinear mate-
rials response of the two systems. Furthermore, there could
also be discrepancies between the error in the percolation
thresholds compared, noting that ϕ = 1 wt% for PP/HrGO is
very close to the threshold determined from the percolation
theory.

The PP/HrGO nanocomposite elastic and viscous
Lissajous-Bowditch (LB) diagrams, for a selected (ω, γ0) sub-
set of the data in Fig. 5, are shown in Fig. 8. The material
signatures are thus arranged in a Pipkin diagram for visual
inspection. Linear viscoelastic material signatures (elliptic)
are readily observable in both elastic and viscous LB dia-
grams, with nonlinear features apparent towards the higher
end of (ω, γ0). The diagrams appear similar for concentrations
below and above the percolation threshold, ϕ ≠ 1 wt% in
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Fig. 8. Markedly different material response could be ob-
served at the percolation threshold, ϕ = 1 wt% in Fig. 8c,
ϕ ≈ ϕc. Thus, the linear viscoelastic signature is already qual-
itatively different for ω < 1 rad/s, whereas for ω > 2 rad/s, both
the linear and nonlinear signatures appear similar to results for
ϕ ≠ 1 wt%.

Independently of the applied ω, v1 > 0, i.e., average viscous
thickening nonlinear response. However, for ω < 1 rad/s, the
nonlinear response is driven by large instantaneous strains, v3

< 0. In contrast, for ω > 1 rad/s, the nonlinear response is driv-
en by large instantaneous rates-of-strain, v3 > 0. The nonlinear
response at ω = 1 rad/s for ϕ = 1 wt% appears very similar ω =
0.6 rad/s for ϕ = 0.8 wt%. Interestingly, a similar behavior is
observed above the percolation point at ϕ = 1.5 wt% (Fig. 9d).
Thus, for ω ≤ 1 rad/s v3/1 < 0 and for ω > 1 rad/s v3/1 > 0. In
addition, a γ0 dependence of v3/1 could be distinguished for
ω ≤ 1 rad/s, with v3/1 > 0 at γ0 > 10% but changes sign at γ0 >
50%, i.e., intracycle strain-stiffening with increasing strains
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Fig. 8 Lissajous-Bowditch diagrams the a unfilled polypropylene, PP
(ϕc = 0), b before the electrical percolation threshold, ϕ < ϕc, c at the
electrical percolation threshold (ϕ = ϕc), and d directly above the

percolation threshold. Top row, (a)–(d), represent the elastic Lissajous-
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and shear thickening at intermediate strain (Du et al. 2018).
For ϕ > 1.5 wt%, Fig. 10, a further increase in v3/1 takes place,
with a strong relative relative increase for ϕ = 3.5 wt%. In

addition, for ϕ = 3.5 wt%, v3/1(γ0) appears to show features
in the linear-nonlinear transition similar to those observed
from FT-Rheology, see Fig. 7.

The nonlinear material response from Chebyshev polyno-
mial decomposition could be discussed in terms of molecular
chain conformational dynamics, confinement, and network
orientation/fragmentations dynamics. Below percolation, ϕ
< ϕc, the material nonlinear response is dominated by chain
conformational dynamics and spatial arrangements. The effect
of the shear flow in nonlinear oscillatory shear is expected to
lead to a certain level of chain orientation, stretching, and
disentanglement. The increased addition of fillers ultimately
leads to strong confinement effects. Below percolation, there
is an incomplete and unextended network. Therefore, it can be
expected that the confinement effects would increase with ϕ.
This appears to correspond to an increase in the strain-
stiffening (e3/1 > 0, e3/1 ∝ ϕ) and a decrease in the shear thick-
ening (v3/1 > 0, v3/1 ∝ 1/ϕ) nonlinear material response, as ob-
served for ϕ < 0.8 wt%. This is in agreement with the gradual
nature typically associated to the rheological percolation
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(Münstedt and Starý 2016). At ϕ = 0.8 wt%, the nonlinear
signature appears sufficiently influenced by the filler concen-
tration such that due to the altered chain conformation dynam-
ics in the vicinity of the fillers that the shear thickening char-
acter is significantly decreased (v3/1 ≈ 0). Thus, there appears
to be a similarity between v3/1 and the relative increase in
Q0(ϕ)/Q0(0) at this filler concentration. While in this case
elastic stiffening dominated the nonlinear material response,
there could be a weak v3/1 = v3/1(γ0) inferred from the data,
similar to the results of Du et al. (2018). Overall, the nonlinear
response for ϕ = 0.8 wt% could be generically associated with
the altered configurational characteristics of the polymer at the
interface and in the interphase region, in comparison to the
conformational characteristics of the polymer in the bulk. ϕ =
1 wt% marks the onset of a weakly connected network that
could be disrupted easily with increasing ω, γ0. The ω-depen-
dence is significantly featured in the viscous nonlinear re-
sponse. For ω < 1, where theresponse is expected to be dom-
inated by the weakly formed percolated filler network, the
nonlinear signature is rate-of-strain dependent, v3/1 < 0. For
ω > 1 as the weak network is expected to be discontinued
and the chain confinement effects dominate, the nonlinear
signature is strain dependent. Thus, the inferred nonlinear

material signature at the low range of ω applied could be
associated to a mechanical response of the network.
Alternatively, this could be associated with parts of larger
network formation structures that have been discontinued, as
v3/1 is increasing with ω. For ϕ > ϕc in the semi-conductor
region, the number of network connections is increased.
This could be validated through the sign change in v3/1 that
occurs at higher ω for ϕ = 1.5 wt% compared to ϕ = 1 wt%. In
addition, the strain dependence observed for ϕ = 1.5 wt%
could also be associated to a weakly formed network, similar-
ly to the process assigned to the ω dependence reported in this
publication. The behavior is qualitatively similar for all con-
centrations ϕ < 3.5 wt%. As the compositions approach the
conductor region, a well-developed and strong network is ex-
pected which would result in a more complicated dynamic
scenario. This fits within the framework of both the FT and
Chebyshev decomposition results obtained for ϕ = 3.5 wt%.
While, thus far the discussion has been overwhelmingly con-
centrated on conformational and interfacial aspects, the non-
linear dynamics could be dominated by the network orienta-
tion dynamics, e.g., see Natale et al. (2018). In a first approx-
imation, it could be conjectured that due to the gradual nature
of chain conformation and confinement, such effects could be

Table 2 Breviary of experimental findings for the HrGO-PP nanocomposites investigated through nonlinear oscillatory shear experiments

3D

L/SCB PP/HrGO

3[origin = c]90Q0(ϕ)/Q0(0) ∝
ϕ, e3/1 ∝ ϕ, v3/1 ∝ 1/ϕ

ϕ < 0.8 wt% MAOS: I3=1∝γ20
e3/1 > 0; v3/1 > 0

ϕ = 0.8 wt% MAOS: I3=1∝γ20
weak relative increase in Q0(ϕ)/Q0(0)

e3/1 > 0; v3/1 ≈ 0, especially for ω = 0.6 rad/s

ϕ = 1 wt% MAOS: I3=1∝γn0, n = n(ω)
(ϕ ≈ ϕc) n ≈ 0.7 for ω = 0.6 rad/s; n ≈ 1.1 for ω = 1 rad/s;

n ≈ 2, for ω > 2 rad/s

significant relative increase in Q0(ϕ)/Q0(0)

e3/1 > 0; v3/1 = v3/1(ω)

v3/1 < 0 for ω < 1 rad/s (v3 < 0)

v3/1 > 0 for ω > 2 rad/s (v3 > 0)

v3/1 weak dependence on γ0
1 < ϕ < 3.5 wt% SAOS-MAOS: I3=1∝γn0, n = n(ω, γ0, ϕ)

e.g., ϕ = 1.5 wt%: for ω < 2 rad/s, γ0 ∈ [1, 10] %, n ≈ 0;
γ0 ∈ [10, 40] %, n = 2

for ω ≥ 2,→ n = 2

e3/1 > 0; v3/1 = v3/1(ω, γ0, ϕ):

e.g., ϕ = 1.5 wt%: for ω < 2 rad/s, γ0 ∈ [10, 40] %, v3/1 < 0;

γ0 > 40%, v3/1 > 0

for ω > 2, v3/1 > 0

ϕ = 3.5 wt% I3=1∝γn0; with increasing γ0: n ≈ 1.1, n ≈ 0.2 and n ≈ 0.4
significant relative increase in e3/1, v3/1
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perhaps associated dominantly to the elastic stiffening re-
sponse. Meanwhile, network properties and their orientation/
fragmentation dynamics to the viscous shear thickening non-
linear response.

Summary and conclusions

In this study, the percolation behavior of 3D hierarchical re-
duced graphene oxide (HrGO)-polypropylene (PP) nanocom-
posites has been evaluated from rheological point of view,
with a focus on their nonlinear behavior. The electrical perco-
lation threshold of the HrGO-PP nanocomposites (ϕc ≈ 0.94
wt%), Gkourmpis et al. (2019) is the lowest reported value in
the scientific literature for similar systems prepared via melt
mixing. An overview of the findings is presented in Table 2.
Under the assumption that the nonlinear I3/1 scaling in MAOS
should asymptotically be I3=1∝γ20, a concurrent significant rel-
ative increase in Q0(ϕ)/Q0(0) was recorded at percolation.
Thus, the percolation thresholdwas determinedwith increased
sensitivity using nonlinear measurements compared to linear
viscoelastic tests, in agreement with previous similar studies.
However, in contrast to previous research, the electrical per-
colation threshold could be readily identified in the rheologi-
cal data through a unique nonlinear signature. For ϕ = 1 wt%,
ϕ ≈ ϕc, the nonlinear material response in dynamic strain
sweep tests is dependent on the applied angular frequency,
ω. This dependence was shown both in the third relative
higher harmonic I3/1 scaling and in v3/1. Thus, at electrical
percolation a I3=1∝γn0, n = n(ω) with n increasing with ω
whereby for ω > 2 the typical MAOS scaling of n = 2 was
observed, just as for concentrations below percolation.
Correspondingly, a sign change in the third relative viscous
Chebyshev coefficient, v3/1, i.e., from a intracycle viscous
thickening behavior driven by large strains (v3/1 < 0) to being
driven by large rates-of-strain (v3/1 > 0). As ω was increased
I3/1 as well as v3/1 reverted to a behavior similar the concen-
trations before percolation. This could be potentially signaling
the emergence of a weakly connected network that is being
disrupted by the applied strains/strain rates. Thus, for super-
critical concentrations, ϕ > ϕc, a scaling of I3=1∝γn0, with n =
n(ω, γ0, ϕ) was observed. Similarly, v3/1 = v3/1(ω, γ0, ϕ). In
particular, this behavior was inferred to be as a result of a more
robust and developed filler network. Similar scaling in I3/1 has
been reported for systems expected to have a stronger network
at percolation due to the higher concentrations required to
achieve it, e.g., see Gaska and Kádár (2019). Overall, the
results could provide useful insights related to the detection
of the percolation threshold in polymer nanocomposites, as
well as into the filler network dynamics during flow.
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