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ABSTRACT: Motivated by the substantial interest in various fillers to enhance the barrier properties of polymeric films,
especially graphene derivatives, we perform a computational screening of obstructed diffusion to explore the design parameter
space of nanoplatelet-filled composites synthesized in silico. As a model for the nanoplatelets, we use circular and elliptical
nonoverlapping and impermeable flat disks, and diffusion is stochastically simulated using a random-walk model, from which the
effective diffusivity is calculated. On the basis of ∼1000 generated structures and diffusion simulations, we systematically
investigate the impact of different nanoplatelet characteristics such as orientation, layering, size, polydispersity, shape, and
amount. We conclude that the orientation, size, and amount of nanoplatelets are the most important parameters and show that
using nanoplatelets oriented perpendicular to the diffusion direction, under reasonable assumptions, with approximately 0.2%
(w/w) graphene, we can reach 90% reduction and, with approximately 1% (w/w) graphene, we can reach 99% reduction in
diffusivity, purely because of geometrical effects, in a defect-free matrix with perfect compatibility. Additionally, our results
suggest that the existing analytical models have some difficulty with extremely large aspect ratio (extremely flat) nanoplatelets,
which calls for further development.

KEYWORDS: composites, nanoplatelets, diffusivity, graphene, computational screening

1. INTRODUCTION
There is substantial interest in nanoplatelet-filled (bio)-
polymeric composites because of their barrier properties for
obstructing the transport of gas, vapor, and liquid. We are
concerned in particular with graphene and graphene derivatives
for their potential of enhancing barrier properties, which some
of the authors currently investigate experimentally.1−3

Graphene, a 2D carbon monolayer forming a hexagonal lattice,
possesses exceptional mechanical, thermal, and optical proper-
ties, high crystal and electronic quality, and extremely high
surface area.4,5 Graphene and its many derivatives have
emerged as some of the most highly promising material classes
of the future, with applications in energy storage,6 electronics
and optoelectronics,7 biological and chemical sensors,8 environ-
mental decontamination and water desalination,9 and many
others.10 There is a rather comprehensive literature on
graphene/polymer nanocomposites and their permeability.

This covers many different types of polymers, e.g., poly(lactic
acid), poly(ethylene terephthalate), poly(vinyl chloride),
polystyrene, cellulose, poly(vinyl alcohol), and poly-
(ethylenimine), and many different types of graphene
derivatives, e.g., graphene, various forms of (reduced) graphene
oxide, and exfoliated graphite. A plethora of processing
conditions and weight/volume fractions lead to reported results
on a reduction in the (gas) permeability ranging from a few
percent to above 99.94%. The amount of reduction depends on
the chemistry as such but also on purely geometrical
characteristics such as the heterogeneity and orientation of
the graphene-based obstacles in the polymer matrix, determin-
ing the degree of tortuosity, i.e., the lengths of the diffusive
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pathways through the material.11−32 In Figure 1, examples of
polymer nanocomposite morphologies studied by means of a
digital scanning electron microscope (Carl Zeiss DSM 940,
Carl Zeiss AG, Oberkochen, Germany) are shown. The
polymeric matrix consists of a commercial low-density
polyethylene (LDPE; Mw = 92 kg/mol, PI = 7.6, and Tm =
111 °C; Borealis AB, Stenungsund, Sweden). The nanofillers
are two commercial types of graphite nanoplatelets (GnPs; XG
Sciences, Lansing, MI) with 5 and 25 μm mean diameters. The
nanocomposites are manufactured via extrusion processing,
resulting in highly oriented nanofillers in the extrusion flow
direction.1−3,33 In connection with these experiments, we are
interested in gaining an understanding of the effect of the
different material properties and processing conditions by
means of simulation.
Some molecular-dynamics-based simulation studies on

graphene oxide membranes, nanoporous graphene, and stacked
layers of graphene sheets and their molecular-level interactions
with a permeating species have been performed.34−39 At the
mesoscale level, more relevant for our work, purely geometrical
obstruction effects on the diffusion/permeability have been
studied in both 2D and 3D. These studies use finite-element
and grid-based methods as well as theoretical methods to solve
the diffusion and Laplace equations for the local chemical
potential. There is, for the most part, a focus on round platelets
with aspect ratios α ranging from 3 to 1000, the volume
fraction, orientational distributions, random and ordered

configurations, multiscale approaches to account for diffusion
inside lamellar obstacles, and the impact of interaction between
the polymer and filler.31,40−56

In this work, we perform a computational screening of
obstructed diffusion to explore the design parameter space of
nanoplatelet-filled composites synthesized in silico. As a model
for the nanoplatelets, we use circular and elliptical non-
overlapping and impermeable (with solubility 0 and without
defects) flat disks (with an infinite aspect ratio, i.e., infinitely
flat). This provides a simple model of graphene-based
nanoplatelets dispersed in a homogeneous, isotropic, polymer
matrix under the assumption of perfect compatibility between
the matrix and filler, i.e., that the proximity to a filler particle
does not influence the properties of the matrix through
interactions or nucleation of crystal structures (implying that
the diffusivity controls the permeability entirely). It is obvious
that inhomogeneities in the matrix can impact the diffusiv-
ity,31,56 but we focus on purely the geometrical effects of
nanoplatelets on diffusion in this work. Diffusive transport of
point particles is stochastically simulated using a random-walk
model from which the effective diffusivity is calculated. On the
basis of ∼1000 simulated structures and their corresponding
simulated effective diffusivities, we systematically investigate the
impact of different nanoplatelet characteristics, such as the
angular orientation, layered structures, size, polydispersity,
shape, and total amount. The aim of this computational
screening paradigm is to compare the relative impact of these

Figure 1. Examples of polymer nanocomposite morphologies studied by means of a digital scanning electron microscope: (a) 1% (w/w) nanofillers
with 5 μm mean diameter; (b) 5% (w/w) nanofillers with 5 μm mean diameter; (c) 5% (w/w) nanofillers with 25 μm mean diameter. The extrusion
flow direction is orthogonal to the image plane.

Figure 2. Examples of structures from different data sets, showing (a) orientation constrained to a maximum angular deviation from the z axis set to
π/10, (b) a layer with thickness 25 μm, (c) 100 large disks, (d) polydisperse disks with a coefficient of variation equal to 1, (e) elongated elliptical
disks with a semiaxis ratio of 5, and (f) a very dense configuration with a total surface area of 5 × 105 μm2 and 2500 disks.
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parameters. The ambition is to explore by a computational
screening the effect of varying different geometrical parameters
independently and to discover and understand the generic
design rules for graphene−polymer nanocomposites and the
tailoring of mass-transport properties. To our knowledge, this
joint study of many different parameters has not been done
before for these materials, and this effort will aid in guiding
future experimental work.

2. METHODS
2.1. Structure Generation. Random configurations of non-

overlapping elliptical flat disks (including circular disks as a special
case) are generated in a cubic simulation domain with side L = 100 μm
(the algorithms are all scale-independent, but a scale on the order of
100 μm is a realistic setting for our problem) using a hard-particle
Markov chain Monte Carlo (MCMC)-type algorithm. First, disks are
placed randomly (and possibly overlapping), either uniformly
distributed in the whole simulation domain with random orientations
or subject to some constraints, see below. Second, the configurations
are relaxed, iteratively performing random translations and rotations of
all particles until all overlaps have been removed. Finally, the
configurations are equilibrated, performing a large number of random
translations and rotations of all particles ensuring a distribution in the
location and orientation that is as uniform as possible. The overlap
criterion is based on the Perram−Wertheim overlap criterion57 for two
ellipsoids of arbitrary orientation, reduced to the “degenerate” case of
two ellipses considered as flat ellipsoids with one semiaxis equal to
zero (the resulting overlap criterion is well-defined except in the case
of two coplanar ellipses for which the intersection is a single point, but
this is immaterial for simulation purposes). The algorithm is
implemented in Julia (www.julialang.org),58 and the code is available
in a Github repository (https://github.com/roding/whitefish_
generation, version 0.1). On a dual Intel Xeon E5-2699 v4 setup,
the execution time is, on average, ∼1 min (single thread).
We generate several series of structure data sets to study the impact

of different structural parameters, i.e., orientation, layering, number of
disks, polydispersity, shape, and total surface area (by which we mean
the sum of the surface areas of the disks, not counting both sides).
Some structures are anisotropic; we have defined the z axis as the
direction “through” the material, and even though we perform 3D
diffusion simulations, the effective diffusivity will later be calculated in
the z direction. We study the following (examples of structures from
the different data sets are shown in Figure 2):
(i) Orientation: For a total surface area of 105 μm2 and 500 disks

(with radius ∼8 μm), the maximum angular deviation relative to the z
axis is varied between 0 (all disks orthogonal to the axis; the angular
constraint is with respect to the normal vector of the disk) and π/2
(free orientation).
(ii) Layering: For a total surface area of 105 μm2 and 500 disks

(with radius ∼8 μm), the disks are compressed into a layer centered in
the simulation domain with the thickness along the z axis varied
between 25 and 100 μm (the latter meaning no constraint).
(iii) Number: For a total surface area of 105 μm2, the number of

disks is varied between 100 and 1000, hence distributing the same total
surface area differently and changing the radius from ∼5.5 to ∼18 μm.
(iv) Polydispersity: For a total surface area of 105 μm2 and 500

disks, the surface areas of the disks are log-normal-distributed with a
coefficient of variation (i.e., ratio of the standard deviation and the
mean) between 0 and 1 (the latter being a very broad distribution).
Because randomly sampling areas will create a random variation in the
total surface area, we normalize the total surface area to 105 μm2 in
order to isolate the effect of polydispersity.
(v) Shape: For a total surface area of 105 μm2 and 500 disks, the

semiaxis ratio is varied between 1 and 10, ranging from circular disks
to very elongated elliptical disks.
(vi) Total surface area: For a constant radius of ∼8 μm as above, the

total surface area is varied from 5 × 104 to 5 × 105 μm2 by varying the
number of disks from 250 to 2500.

Finally, we also study the combined effect of some of these
parameters with a discussion toward practical feasibility and usefulness.

2.2. Diffusion Simulation. Diffusion in the generated structures is
simulated using a “random-walk particle tracking” technique.59,60 An
ensemble of N = 4 × 106 diffusing point particles is initially uniformly
distributed in the simulation domain. Stochastic particle motion is
simulated as a Gaussian random walk with time resolution δt = 0.0025
arbitrary units (a.u.) and diffusion coefficient D0 = 1 a.u., hence adding
random normal distributed displacements to the position in each time
step with zero mean and standard deviation δD t2 0 (assuming that D0

is constant corresponds to assuming a perfect compatibility between
the matrix and filler, i.e., that the proximity to a filler particle does not
influence the properties of the matrix). The position is recorded at
each major time step Δt = 0.25 a.u. The simulation proceeds up to tmax
= 2000 a.u. (for all structures except the layering data set) or 5000 a.u.
(the layering data set). Single rejection boundary conditions61 are
used; a proposed displacement is only accepted if it does not pass
through any disk(s) (this is equivalent to zero solubility within the
disks). A time-dependent effective diffusion coefficient (i.e.,
obstruction factor) in the z direction is computed as

∑= −
=

D
D ND t

z t z
1

2
[ ( ) (0)]t

n

N

n n
0 0 1

2

(1)

where zn(t) is the z position of the nth particle at time t. The effective
diffusivity is obtained as the asymptotic value D∞/D0 ≤ 1. The
finiteness of δt implies that the probability of accepting a displacement
is smaller than 1 and hence that, effectively, D0 < 1 in practice (or,
more precisely, Dδt < 1). We compensate for this by dividing all
estimated effective diffusion coefficients with the corresponding
“empirical” D0 (Dδt) as obtained in that structure (the impact on
the results is, in most cases, negligible, however). An advantage of this
simulation technique is that the nanoplatelets can be exactly
represented without discretization and approximation, and depending
on the choice of time resolution δt, the diffusive transport can be
simulated with arbitrary precision. The algorithm is provided in a
parallel implementation in Julia (www.julialang.org),58 and the code is
available in a Github repository (https://github.com/roding/
whitefish_diffusion, version 0.1). On a dual Intel Xeon E5-2699 v4
setup, the execution time is, on average, ∼2.5 h (88 threads). In Figure
3, some examples of computed effective diffusivity curves are shown.

3. RESULTS AND DISCUSSION
First, we investigate the effect of the distribution of angles
relative to the z direction. We impose the constraint that the
maximum angular deviation relative to the z axis is varied
between 0 (all disks perpendicular to the axis; the angular
constraint is with respect to the normal vector of the disk) and

Figure 3. Examples of the effective diffusivity curves, showing the Dt/
D0 ratio, i.e., the obstruction factor, as a function of time t. Asymptotic
values D∞/D0 are obtained by extracting the end points of these
curves.
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π/2 (free orientation). As shown in Figure 4, the effective
diffusivity increases as the angular constraint is relaxed. The

enhancement in the barrier properties (i.e., the reduction from
the effective diffusivity equal to unity) is ∼15% for the
randomly oriented case and ∼45% for the perfectly
perpendicular case. Hence, these results are in line with the
predictions of Fredrickson and Bicerano,42 stating a 3-fold
improvement when moving from random to perfectly aligned
configurations.
Second, we investigate the effect of having a layered or a

nonlayered structure. The disks are compressed into a layer
centered in the simulation domain with the thickness along the
z axis varied between 25 and 100 μm (the latter meaning no
constraint, i.e., that the disks are completely uniformly
distributed). As shown in Figure 5, the effect is quite small,

with a slightly decreasing effective diffusivity as the disks are
increasingly uniformly distributed. This small effect could be
because of increased ordering in the structure when the disks
are more tightly packed; indeed, whereas the mean angular
deviation from the z axis is constant (∼π/2), the standard
deviation of angular deviations increases from ∼0.45 to ∼0.55
rad when the thickness goes from 25 to 100 μm, indicative of a
less angular ordering for a less compressed layer.
Third, we investigate the effect of the number of disks, varied

between 100 and 1000 for a constant total surface area. Hence,
the surface area is distributed over a different number of disks,

thereby varying the radius from ∼5.5 to ∼18 μm. As shown in
Figure 6, the effect is quite pronounced, with lower effective

diffusivities for a few large disks than for many small ones.
Apparently, large obstacles more efficiently block diffusion,
whereas with small obstacles, more possible diffusive pathways
are available.
Fourth, we investigate the effect of the polydispersity or size

distribution of the disks, with the surface areas of the disks
being log-normal-distributed with a coefficient of variation (i.e.,
ratio of the standard deviation and the mean) between 0 and 1
(the latter being a fairly broad distribution). By normalization
to a fixed mean area and total surface area, the effect of the
polydispersity can be studied completely independently of the
mean disk area. As shown in Figure 7, the effect is rather small,

with slightly decreasing effective diffusivity for increasing
polydispersity. We attribute this to a few large disks efficiently
blocking the diffusion. The spread in the effective diffusivity is
also increasing. This is an effect of the larger differences
between statistically equal polydisperse configurations than
between monodisperse ones (the latter differing only in the
localization and orientation, not in where the large and small
disks are). In conclusion, the polydispersity is, to some extent,
giving the same effect as increasing the mean disk area,
although the latter has more effect. This is in line with work by
Lape et al.,62 which predicts a decrease in the diffusivity with
increasing polydispersity.

Figure 4. Effective diffusivity as a function of the maximum angular
deviation relative to the z axis, from 0 (all disks perpendicular to the
axis) to π/2 (free orientation).

Figure 5. Effective diffusivity as a function of the layer thickness, with
the layer being centered in the simulation domain with the thickness
along the z axis varied between 25 and 100 μm (the latter meaning no
constraint, i.e., that the disks are completely uniformly distributed).

Figure 6. Effective diffusivity as a function of the number of disks,
varied between 100 and 1000 for a constant total surface area,
simultaneously varying the radius from ∼5.5 to ∼18 μm.

Figure 7. Effective diffusivity as a function of the coefficient of
variation (i.e., ratio of the standard deviation and the mean) for the
distribution of disk areas.
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Fifth, we investigate the effect of the shape by varying the
semiaxis ratios of the disks between 1 and 10, ranging from
circular disks to very elongated elliptical disks. As shown in
Figure 8, more elongated elliptical disks are less efficient as

barriers than circular disks. This actually came as a surprise;
because elongated disks are more “entangled”, we believed at
first that they should give more tortuous diffusive pathways.
However, in reality, we observe the opposite effect, which can
be understood by considering that it is easier to “diffuse
around” particles that are very small in one dimension. This is
thereby an effect related to the fact that smaller particles in
larger numbers block diffusion less efficiently as concluded
earlier.
Sixth, we investigate the effect of the total surface area. For a

constant radius of ∼8 μm, as in most investigations above, the
total surface area is varied from 5 × 104 to 5 × 105 μm2 by
varying the number of disks from 250 to 2500. As shown in
Figure 9, the effect is quite pronounced, as would be obvious.
The effect of the total surface area will be further investigated
below.

After investigating these six parameters and their impact on
the overall effective diffusivity, we proceed to a more in-depth
analysis of a special, “best” case where we focus on circular,
monodisperse disks, aligned perpendicular to the diffusion
direction and with no layering; i.e., the disks are uniformly
distributed in the simulation domain. For three different
particle radii, 7.5, 12.5, and 17.5 μm, we perform simulations

for the total surface areas of 105, 2 × 105, ..., 15 × 105 μm2

(these simulations are more computationally demanding than
before because of the increased number of disks, and, therefore,
we perform a rather small number of them in this final
simulation series). We study three different radii because the
previous investigation made it clear that the radius is an
important factor; the three chosen values are realistic values for
graphene-based fillers (see Figure 1 and the description). In the
simulations, the nanoplatelets are infinitely thin and, hence,
have zero volume fraction; the obstruction effects are
completely due to the surface area and not the volume. In
order to make more sense of these final results in a physical
context, assume that we have a generic polymer matrix with a
density of 1 g/cm3 and that we have an average of 10 layers of
graphene in each nanoplatelet (the density of the graphene is
0.77 mg/m2, and it is noteworthy that <10 layers is typically
considered “graphene” and >10 layers is typically considered
GnPs). The results can be plotted as a function of the weight
fraction, shown in Figure 10 and demonstrating as expected

that the larger particles have superior barrier properties. In
previous investigations, we only reached rather moderate
obstruction effects (D∞/D0 > 0.55), but now we see that the
synergetic effect of the angular alignment and larger total
surface area can provide more than 99% reduction in diffusivity
purely because geometrical effects. We see that, for 17.5-μm-
radius disks and with approximately 0.2% (w/w) graphene, we
can reach 90% reduction and, with approximately 1% (w/w)
graphene, we can reach 99% reduction in diffusivity, purely
because of geometrical effects. Of course, the fewer layers of
graphene on average, the smaller the weight fraction of the filler
necessary to obtain this level of obstruction. Furthermore, some
comparison with analytical models for diffusivity (or rather
permeability) is of interest. We considered three models for
platelets/flakes aligned perpendicularly to the direction of
diffusion and incorporating volume fraction ϕ and aspect ratio
(diameter-to-thickness ratio) α, namely, the Nielsen model,63

ϕ= −
+ αϕ

∞D
D

1

10 2 (2)

the Lape−Nuxoll−Cussler model,62

Figure 8. Effective diffusivity as a function of the semiaxis ratio for
elliptical disks, ranging from 1 (circular disks) to 10 (very elongated
elliptical disks).

Figure 9. Effective diffusivity as a function of the total surface area for
a constant disk radius of ∼8 μm, varying the number of disks from 250
to 2500.

Figure 10. Effective diffusivities as a function of the amount/weight
fraction of graphene assuming 10 layers of graphene in the filler
particles, compared with three analytical models: the Nielsen model
(solid lines), the Lape−Nuxoll−Cussler model (dashed lines), the
Gusev−Lusti model (dash-dotted lines), and finally the f itted Lape−
Nuxoll−Cussler model (solid blue lines). Note the log scale on the
vertical axis.
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ϕ= −

+ αϕ
∞

( )
D
D

1

10 2
3

2

(3)

and the Gusev−Lusti model,47

ϕ= −
αϕ

∞D
D

1

e0
( /3.47)0.71

(4)

Assuming that we have 10 layers of graphene, each 0.335 nm
thick, in each nanoplatelet, the thickness is 3.35 nm and, hence,
the aspect ratios for the three different particle diameters are
between 4500 and 10500. As a function of the weight fraction,
the predictions of these three models are also plotted in Figure
10. None of them fit particularly well. However, if the aspect
ratio α is treated as a fitting parameter that can be tweaked
rather than as a physical parameter that is a known constant, a
near-perfect fit can be found for the Lape−Nuxoll−Cussler
model by choosing a value of α equal to ∼0.32 times its true
value. The fact that the Lape−Nuxoll−Cussler model fits well
only with a tweaked parameter and that none of the models fit
well without tweaking may be indicative of a difficulty to
capture the effects of very large aspect ratios in analytical
models.

4. CONCLUSION

We have performed computational screening of the effective
diffusivity and barrier properties in nanoplatelet-filled compo-
sites synthesized in silico. As a model for the nanoplatelets, we
use circular and elliptical nonoverlapping and impermeable flat
disks dispersed in a homogeneous, isotropic (polymer) matrix
with constant solubility, assuming perfect compatibility
between the matrix and filler. Exploring the design space of
this model using ∼1000 simulated structures and effective
diffusivity simulations, we assessed the importance of several
geometrical parameters independently such as the orientation,
layering, size, polydispersity, shape, and amount of nano-
platelets. We found that the most crucial parameters are, not
very surprisingly, the angular orientation/alignment, size, and
amount of nanoplatelets. Further investigation into these
parameters demonstrated that, under reasonable assumptions,
with approximately 0.2% (w/w) graphene, we can reach 90%
reduction and, with approximately 1% (w/w) graphene, we can
reach 99% reduction in diffusivity, purely because of geo-
metrical effects, not relying on, e.g., crystal nucleation. Of
course, the fewer layers of graphene on average, the smaller the
weight fraction of the filler necessary to obtain this level of
obstruction. The investigated model constitutes a rather
simplified model of a polymer−graphene nanocomposite;
nevertheless, generic design rules and their implications on
the effective diffusivity can be understood through the use of
this model and facilitate the tailoring of mass-transport
properties of barrier materials, thus guiding future experimental
work. There are promising directions to pursue in further work,
such as characterization of the materials by means of spatial
statistics for a further understanding of the critical geometrical
features, e.g., tortuosity and correlation functions, and assessing
the effect of an inhomogeneous matrix and defects in the
nanoplatelets. Additionally, our results suggest that existing
analytical models have some difficulty with extremely large
aspect ratio (extremely flat) nanoplatelets, which calls for
further development.
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Magnus Röding: 0000-0002-5956-9934
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The financial support of the Swedish Research Council (Grant
2016-03809), the Strategic Innovation Program SIO Grafen
funded by the Swedish Governmental Agency for Innovation
Systems (Vinnova), the Swedish Research Council for
Environment, Agricultural Sciences and Spatial Planning
(Formas), the Swedish Energy Agency, and the Swedish
Foundation for Strategic Research project “Material structures
seen through microscopy and statistics” is acknowledged. The
computations were, in part, performed on resources at the
Chalmers Centre for Computational Science and Engineering
provided by the Swedish National Infrastructure for Comput-
ing.

■ REFERENCES
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(33) Induchoodan, G.; Kad́aŕ, R. Tailoring Polymer Nanocomposite
Microstructure by Controlling Orientation, Dispersion and Exfoliation
of GnP in LDPE via Extrusion Flow. Annu. Trans. Nordic Rheol. Soc.
2016, 24, 187.
(34) Wei, N.; Peng, X.; Xu, Z. Understanding Water Permeation in
Graphene Oxide Membranes. ACS Appl. Mater. Interfaces 2014, 6,
5877−5883.
(35) Müller, E. Purification of Water Through Nanoporous Carbon
Membranes: A Molecular Simulation Viewpoint. Curr. Opin. Chem.
Eng. 2013, 2, 223−228.
(36) Jiao, S.; Xu, Z. Selective Gas Diffusion in Graphene Oxides
Membranes: A Molecular Dynamics Simulations Study. ACS Appl.
Mater. Interfaces 2015, 7, 9052−9059.
(37) Sun, P.; Wang, K.; Zhu, H. Recent Developments in Graphene-
based Membranes: Structure, Mass-transport Mechanism and
Potential Applications. Adv. Mater. 2016, 28, 2287−2310.
(38) Muscatello, J.; Jaeger, F.; Matar, O.; Müller, E. Optimizing
Water Transport Through Graphene-based Membranes: Insights from
Nonequilibrium Molecular Dynamics. ACS Appl. Mater. Interfaces
2016, 8, 12330−12336.
(39) Konatham, D.; Yu, J.; Ho, T.; Striolo, A. Simulation Insights for
Graphene-based Water Desalination Membranes. Langmuir 2013, 29,
11884−11897.
(40) Lusti, H.; Gusev, A.; Guseva, O. The Influence of Platelet
Disorientation on the Barrier Properties of Composites: A Numerical
Study. Modell. Simul. Mater. Sci. Eng. 2004, 12, 1201−1207.
(41) Greco, A.; Maffezzoli, A. Finite Element Modeling of Multiscale
Diffusion in Intercalated Nanocomposites. J. Nanomater. 2015, 2015,
1.
(42) Fredrickson, G.; Bicerano, J. Barrier Properties of Oriented Disk
Composites. J. Chem. Phys. 1999, 110, 2181−2188.
(43) Bharadwaj, R. Modeling the Barrier Properties of Polymer-
layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189−
9192.
(44) Lu, C.; Mai, Y.-W. Permeability Modelling of Polymer-layered
Silicate Nanocomposites. Compos. Sci. Technol. 2007, 67, 2895−2902.
(45) Choudalakis, G.; Gotsis, A. Permeability of Polymer/Clay
Nanocomposites: A Review. Eur. Polym. J. 2009, 45, 967−984.
(46) Minelli, M.; Baschetti, M.; Doghieri, F. A Comprehensive Model
for Mass Transport Properties in Nanocomposites. J. Membr. Sci.
2011, 381, 10−20.
(47) Gusev, A.; Lusti, H. Rational Design of Nanocomposites for
Barrier Applications. Adv. Mater. 2001, 13, 1641−1643.
(48) Greco, A. Numerical Simulation and Mathematical Modeling of
2D Multi-scale Diffusion in Lamellar Nanocomposite. Comput. Mater.
Sci. 2014, 90, 203−209.
(49) Greco, A.; Maffezzoli, A. Two-dimensional and Three-
dimensional Simulation of Diffusion in Nanocomposite with
Arbitrarily Oriented Lamellae. J. Membr. Sci. 2013, 442, 238−244.
(50) Greco, A.; Corcione, C.; Maffezzoli, A. Effect of Multi-scale
Diffusion on the Permeability Behavior of Intercalated Nano-
composites. J. Membr. Sci. 2016, 505, 92−99.
(51) Papathanasiou, T.; Tsiantis, A. Orientational Randomness and
its Influence on the Barrier Properties of Flake-filled Composite Films.
J. Plast. Film Sheeting 2017, 33, 438−456.
(52) Tsiantis, A.; Papathanasiou, T. The Barrier Properties of Flake-
filled Composites with Precise Control of Flake Orientation. Mater.
Sci. Appl. 2017, 8, 234−246.

ACS Applied Nano Materials Article

DOI: 10.1021/acsanm.7b00067
ACS Appl. Nano Mater. 2018, 1, 160−167

166

http://dx.doi.org/10.1021/acsanm.7b00067


(53) Dondero, M.; Tomba, J.; Cisilino, A. The Effect of Flake
Orientational Order on the Permeability of Barrier Membranes:
Numerical Simulations and Predictive Models. J. Membr. Sci. 2016,
514, 95−104.
(54) Greco, A.; Esposito Corcione, C.; Maffezzoli, A. Diffusion in
Oriented Lamellar Nanocomposite: Numerical Analysis of the Effects
of Dispersion and Intercalation. Comput. Mater. Sci. 2017, 133, 45−51.
(55) Xiao, J.; Huang, Y.; Manke, C. Computational Design of
Polymer Nanocomposite Coatings: A Multiscale Hierarchical
Approach for Barrier Property Prediction. Ind. Eng. Chem. Res. 2010,
49, 7718−7727.
(56) Choudalakis, G.; Gotsis, A. Free Volume and Mass Transport in
Polymer Nanocomposites. Curr. Opin. Colloid Interface Sci. 2012, 17,
132−140.
(57) Perram, J.; Wertheim, M. Statistical Mechanics of Hard
Ellipsoids. I. Overlap Algorithm and the Contact Function. J. Comput.
Phys. 1985, 58, 409−416.
(58) Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V. Julia: A Fresh
Approach to Numerical Computing. SIAM Rev. 2017, 59, 65−98.
(59) Liasneuski, H.; Hlushkou, D.; Khirevich, S.; Höltzel, A.;
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