57 research outputs found

    Influenza Virus Ribonucleoprotein Complexes Gain Preferential Access to Cellular Export Machinery through Chromatin Targeting

    Get PDF
    In contrast to most RNA viruses, influenza viruses replicate their genome in the nucleus of infected cells. As a result, newly-synthesized vRNA genomes, in the form of viral ribonucleoprotein complexes (vRNPs), must be exported to the cytoplasm for productive infection. To characterize the composition of vRNP export complexes and their interplay with the nucleus of infected cells, we affinity-purified tagged vRNPs from biochemically fractionated infected nuclei. After treatment of infected cells with leptomycin B, a potent inhibitor of Crm1-mediated export, we isolated vRNP export complexes which, unexpectedly, were tethered to the host-cell chromatin with very high affinity. At late time points of infection, the cellular export receptor Crm1 also accumulated at the same regions of the chromatin as vRNPs, which led to a decrease in the export of other nuclear Crm1 substrates from the nucleus. Interestingly, chromatin targeting of vRNP export complexes brought them into association with Rcc1, the Ran guanine exchange factor responsible for generating RanGTP and driving Crm1-dependent nuclear export. Thus, influenza viruses gain preferential access to newly-generated host cell export machinery by targeting vRNP export complexes at the sites of Ran regeneration

    EnGraft: a multicentre, open-label, randomised, two-arm, superiority study protocol to assess bioavailability and practicability of EnvarsusĀ® versus Advagrafā„¢ in liver transplant recipients

    Get PDF
    Background Graft rejection and chronic CNI toxicity remain obstacles to organ transplant success. Current formulations of tacrolimus, such as PrografĀ® and Advagrafā„¢, exhibit limitations in terms of pharmacokinetics and tolerability, related in part to suboptimal bioavailability. As dosing non-compliance can result in graft rejection, the once daily formulation of tacrolimus, Advagrafā„¢, was developed (vs 2x/day PrografĀ®). Benefits of Advagrafā„¢ are counterbalanced by delayed achievement of therapeutic trough levels and need for up to 50% higher doses to maintain PrografĀ®-equivalent troughs. EnvarsusĀ® is also a prolonged-release once-daily tacrolimus formulation, developed using MeltDoseā„¢ drug-delivery technology to increase drug bioavailability; improved bioavailability results in low patient drug absorption variability and less pronounced peak-to-trough fluctuations. In phase III de novo kidney transplant studies, EnvarsusĀ® proved non-inferior to twice-daily tacrolimus; however, no phase IV studies show superiority of EnvarsusĀ® vs Advagrafā„¢ in de novo liver transplant (LTx) recipients. Methods The EnGraft compares bioavailability and tests superiority of EnvarsusĀ® (test arm) versus Advagrafā„¢ (comparator arm) in de novo LTx recipients. A total of 268 patients from 15 German transplant centres will be randomised 1:1 within 14 days post-LTx. The primary endpoint is dose-normalised trough level (C/D ratio) measured 12 weeks after randomisation. Secondary endpoints include the number of dose adjustments, time to reach first defined trough level and incidence of graft rejections. Additionally, clinical and laboratory parameters will be assessed over a 3-year period. Discussion C/D ratio is an estimate for tacrolimus bioavailability. Improving bioavailability and increasing C/D ratio using Envarsus could reduce renal dysfunction and other tacrolimus-related toxicities; previous trials have shown that a higher C/D ratio (i.e. slower tacrolimus metabolism) is not only associated with improved renal function but also linked to reduced neurotoxic side effects. A higher C/D ratio could improve clinical outcomes for LTx recipients; EnGraft has begun, with one third of patients recruited by January 2022

    Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease

    Modes of AĪ² toxicity in Alzheimerā€™s disease

    Get PDF
    Alzheimerā€™s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-Ī² (AĪ²) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into AĪ² and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating AĪ² toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the AĪ² peptide

    Astrocyte scar formation aids central nervous system axon regeneration

    Get PDF
    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration
    • ā€¦
    corecore