3,197 research outputs found
Electromagnetic wave propagation in spatially homogeneous yet smoothly time-varying dielectric media
We explore the propagation and transformation of electromagnetic waves
through spatially homogeneous yet smoothly time-dependent media within the
framework of classical electrodynamics. By modelling the smooth transition,
occurring during a finite period {\tau}, as a phenomenologically realistic and
sigmoidal change of the dielectric permittivity, an analytically exact solution
to Maxwell's equations is derived for the electric displacement in terms of
hypergeometric functions. Using this solution, we show the possibility of
amplification and attenuation of waves and associate this with the decrease and
increase of the time-dependent permittivity. We demonstrate, moreover, that
such an energy exchange between waves and non-stationary media leads to the
transformation (or conversion) of frequencies. Our results may pave the way
towards controllable light-matter interaction in time-varying structures.Comment: 5 figure
Extension of nano-confined DNA: quantitative comparison between experiment and theory
The extension of DNA confined to nanochannels has been studied intensively
and in detail. Yet quantitative comparisons between experiments and model
calculations are difficult because most theoretical predictions involve
undetermined prefactors, and because the model parameters (contour length, Kuhn
length, effective width) are difficult to compute reliably, leading to
substantial uncertainties. Here we use a recent asymptotically exact theory for
the DNA extension in the "extended de Gennes regime" that allows us to compare
experimental results with theory. For this purpose we performed new
experiments, measuring the mean DNA extension and its standard deviation while
varying the channel geometry, dye intercalation ratio, and ionic buffer
strength. The experimental results agree very well with theory at high ionic
strengths, indicating that the model parameters are reliable. At low ionic
strengths the agreement is less good. We discuss possible reasons. Our approach
allows, in principle, to measure the Kuhn length and effective width of a
single DNA molecule and more generally of semiflexible polymers in solution.Comment: Revised version, 6 pages, 2 figures, 1 table, supplementary materia
Photo-induced volume changes in selenium. Tight-binding molecular dynamics study
Tight-binding molecular dynamics simulations of photo-excitations in small Se
clusters (isolated Se ring and helical Se chain) and glassy Se networks
(containing 162 atoms) were carried out in order to analyse the photo induced
instability inside the amorphous selenium. In the cluster systems after taking
an electron from the highest occupied molecular orbital to the lowest
unoccupied molecular orbital a bond breaking occurs. In the glassy networks
photoinduced volume expansion was observed and at the same time the number of
coordination defects changed significantly due to illumination
Hairpins in the conformations of a confined polymer
If a semiflexible polymer confined to a narrow channel bends around by 180
degrees, the polymer is said to exhibit a hairpin. The equilibrium extension
statistics of the confined polymer are well understood when hairpins are
vanishingly rare or when they are plentiful. Here we analyze the extension
statistics in the intermediate situation via experiments with DNA coated by the
protein RecA, which enhances the stiffness of the DNA molecule by approximately
one order of magnitude. We find that the extension distribution is highly
non-Gaussian, in good agreement with Monte Carlo simulations of confined
discrete wormlike chains. We develop a simple model that qualitatively explains
the form of the extension distribution. The model shows that the tail of the
distribution at short extensions is determined by conformations with one
hairpin.Comment: Revised version. 22 pages, 7 figures, 2 tables, supplementary
materia
Angular distribution studies on the two-photon ionization of hydrogen-like ions: Relativistic description
The angular distribution of the emitted electrons, following the two-photon
ionization of the hydrogen-like ions, is studied within the framework of second
order perturbation theory and the Dirac equation. Using a density matrix
approach, we have investigated the effects which arise from the polarization of
the incoming light as well as from the higher multipoles in the expansion of
the electron--photon interaction. For medium- and high-Z ions, in particular,
the non-dipole contributions give rise to a significant change in the angular
distribution of the emitted electrons, if compared with the electric-dipole
approximation. This includes a strong forward emission while, in dipole
approxmation, the electron emission always occurs symmetric with respect to the
plane which is perpendicular to the photon beam. Detailed computations for the
dependence of the photoelectron angular distributions on the polarization of
the incident light are carried out for the ionization of H, Xe, and
U (hydrogen-like) ions.Comment: 16 pages, 4 figures, published in J Phys
A phenomenological density-scaling approach to lamellipodial actin dynamics
The integration of protein function studied in vitro in a dynamic system like the cell lamellipodium remains a significant challenge. One reason is the apparent contradictory effects that perturbations of some proteins can have on the overall lamellipodium dynamics, depending on exact conditions. Theoretical modeling offers one approach for understanding the balance between the mechanisms that drive and regulate actin network growth and decay. Most models use a \bottom-up" approach, involving explicitly assembling biochemical components to simulate observable behaviour. Their correctness therefore relies on both the accurate characterisation of all the components and the completeness of the relevant processes involved. To avoid potential pitfalls due to this uncertainty, we used an alternative \top-down" approach, in which measurable features of lamellipodium behaviour, here observed in two different cell types (HL60 and B16-F1), directly inform the development of a simple phenomenological model of lamellipodium dynamics. We show that the kinetics of F-actin association and dissociation scales with the local F-actin density, with no explicit location dependence. This justifies the use of a simplified kinetic model of lamellipodium dynamics that yields predictions testable by pharmacological or genetic intervention. A length-scale parameter (the lamellipodium width), emerges from this analysis as an experimentally accessible probe of network regulatory processes
Acquisition of quantifier raising of a universal across an existential: Evidence from German
Our paper reports an act out task with German 5- and 6-year olds and adults involving doubly-quantified sentences with a universal object and an existential subject. We found that 5- and 6-year olds allow inverse scope in such sentences, while adults do not. Our findings contribute to a growing body of research (e.g. Gualmini et al. 2008; Musolino 2009, etc.) showing that children are more flexible in their scopal considerations than initially proposed by the Isomorphism proposal (Lidz & Musolino 2002; Musolino & Lidz 2006). This result provides support for a theory of German, a “no quantifier raising”-language, in terms of soft violable constraints, or global economy terms (Bobaljik & Wurmbrand 2012), rather than in terms of hard inviolable constraints or rules (Frey 1993). Finally, the results are compatible with Reinhart’s (2004) hypothesis that children do not perform global interface economy considerations due to the increased processing associated with it
- …
