112 research outputs found

    Protecting the Baryon Asymmetry with Thermal Masses

    Full text link
    We consider the evolution of baryon number BB in the early universe under the influence of rapid sphaleron interactions and show that BB will remain nonzero at all times even in the case of BL=0B-L = 0. This result arises due to thermal Yukawa interactions that cause nonidentical dispersion relations (thermal masses) for different lepton families. We point out the relevance of our result to the Affleck-Dine type baryogenesis.Comment: 11pp., plain tex, UMN-TH-1248/94, CfPA-TH-94-1

    Exotic leptoquarks from superstring derived models

    Get PDF
    The H1 and ZEUS collaborations have recently reported a significant excess of events at high Q2Q^2 in positron-proton collisions. While there exists insufficient data to conclusively determine the origin of this excess, one possibility is that it is due to a new leptoquark at mass scale around 200 GeV. We examine the type of leptoquark states that exist in superstring derived standard-like models, and show that, while these models may contain the standard leptoquark states which exist in Grand Unified Theories, they also generically contain new and exotic leptoquark states with fractional lepton number, ±1/2\pm1/2. In contrast to the traditional GUT-type leptoquark states, the couplings of the exotic leptoquarks to the Standard Model states are generated after the breaking of U(1)BLU(1)_{B-L}. This important feature of the exotic leptoquark states may result in local discrete symmetries which forbid some of the undesired leptoquark couplings. We examine these couplings in several models and study the phenomenological implications. The flavor symmetries of the superstring models are found to naturally suppress leptoquark flavor changing processes.Comment: 28 pages. Standard Latex. Final version to appear in Nuclear Physics B. Minor changes. References adde

    Recycling universe

    Get PDF
    If the effective cosmological constant is non-zero, our observable universe may enter a stage of exponential expansion. In such case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and inflation with a high expansion rate may resume in those regions. An ``ideal'' eternal observer would then witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal observer would visit each one of these minima with a frequency which depends on the shape of the potential. We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this `recycling' process is taken into account.Comment: 43 pages, 10 figure

    Cosmological constraints on R-parity violation from neutrino decay

    Get PDF
    If the neutrino mass is non-zero, as hinted by several experiments, then R-parity-violating supersymmetric Yukawa couplings can drive a heavy neutrino decay into lighter states. The heavy neutrino may either decay radiatively into a lighter neutrino, or it may decay into three light neutrinos through a Z-mediated penguin. For a given mass of the decaying neutrino, we calculate its lifetime for the various modes, each mode requiring certain pairs of R-parity-violating couplings be non-zero. We then check whether the calculated lifetimes fall in zones allowed or excluded by cosmological requirements. For the latter case, we derive stringent new constraints on the corresponding products of R-parity-violating couplings for given values of the decaying neutrino mass.Comment: 13 pages, Latex, uses axodraw.sty; version to appear in Physical Review

    Leptonic CP Violation in Supersymmetric Standard Model

    Get PDF
    We point out the possibility of spontaneous and hard CP-violation in the scalar potential of R-parity broken supersymmetric Standard Model. The existence of spontaneous CP-violation depends crucially on the R-parity breaking terms in the superpotential and, in addition, on the choice of the soft supersymmetry breaking terms. Unlike in theories with R-parity conservation, it is natural, in the context of the present model, for the sneutrinos to acquire (complex) vacuum expectation values. In the context of this model we examine here the global implications, like the strength of the CP-violating interactions and the neutrino masses.Comment: REVTEX, 15 page

    How generic is cosmic string formation in SUSY GUTs

    Full text link
    We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR

    Inflation in Supersymmetric Unified Theories

    Full text link
    We construct supersymmetric unified models which automatically lead to a period of inflation. The models all involve a U(1) symmetry which does not belong to the MSSM. We consider three different types of models depending on whether this extra U(1) is the subgroup of a non abelian gauge group, is a U(1) factor belonging to the visible sector or is a U(1) factor belonging to the hidden sector. Depending on the structure of the unified theory, on the spontaneous symmetry breaking pattern and on whether we have global or local supersymmetry, inflation may be driven by the non-vanishing vacuum expectation value of a F-term or by that of a D-term. In both scenarios cosmic strings form at the end of inflation, and they have different properties in each model. Both inflation and cosmic strings contribute to the CMBR temperature anisotropies. We show that the strings contribute to the ClC_l's up to the level of 75 %. Hence the contribution from strings to the CMBR and to the density perturbations in the early Universe which lead to structure formation cannot be neglected. We also discuss a very interesting class of models which involve a U(1)BLU(1)_{B-L} gauge symmetry.Comment: 22 pages, uses Revte

    Non-perturbative renormalization of QCD

    Get PDF
    In these lectures, we discuss different types of renormalization problems in QCD and their non-perturbative solution in the framework of the lattice formulation. In particular the recursive finite size methods to compute the scale-dependence of renormalized quantities is explained. An important ingredient in the practical applications is the Schr\"odinger functional. It is introduced and its renormalization properties are discussed. Concerning applications, the computation of the running coupling and the running quark mass are covered in detail and it is shown how the Λ\Lambda-parameter and renormalization group invariant quark mass can be obtained. Further topics are the renormalization of isovector currents and non-perturbative Symanzik improvement.Comment: 49 pages, lectures at Schladming-9
    corecore