448 research outputs found

    Computing Topology Preservation of RBF Transformations for Landmark-Based Image Registration

    Full text link
    In image registration, a proper transformation should be topology preserving. Especially for landmark-based image registration, if the displacement of one landmark is larger enough than those of neighbourhood landmarks, topology violation will be occurred. This paper aim to analyse the topology preservation of some Radial Basis Functions (RBFs) which are used to model deformations in image registration. Mat\'{e}rn functions are quite common in the statistic literature (see, e.g. \cite{Matern86,Stein99}). In this paper, we use them to solve the landmark-based image registration problem. We present the topology preservation properties of RBFs in one landmark and four landmarks model respectively. Numerical results of three kinds of Mat\'{e}rn transformations are compared with results of Gaussian, Wendland's, and Wu's functions

    High Cell Diversity and Complex Peptidergic Signaling Underlie Placozoan Behavior.

    Get PDF
    Placozoans, together with sponges, are the only animals devoid of a nervous system and muscles, yet both respond to sensory stimulation in a coordinated manner. How behavioral control in these free-living animals is achieved in the absence of neurons and, more fundamentally, how the first neurons evolved from more primitive cells for communication during the rise of animals are not yet understood [1-5]. The placozoan Trichoplax adhaerens is a millimeter-wide, flat, free-living marine animal composed of six morphologically identified cell types distributed across a simple body plan [6-9]: a thin upper epithelium and a columnar lower epithelium interspersed with a loose layer of fiber cells in between. Its genome contains genes encoding several neuropeptide-precursor-like proteins and orthologs of proteins involved in neurosecretion in animals with a nervous system [10-12]. Here we investigate peptidergic signaling in T. adhaerens. We found specific expression of several neuropeptide-like molecules in non-overlapping cell populations distributed over the three cell layers, revealing an unsuspected cell-type diversity of T. adhaerens. Using live imaging, we discovered that treatments with 11 different peptides elicited striking and consistent effects on the animals' shape, patterns of movement, and velocity that we categorized under three main types: (1) crinkling, (2) turning, and (3) flattening and churning. Together, the data demonstrate a crucial role for peptidergic signaling in nerveless placozoans and suggest that peptidergic volume signaling may have pre-dated synaptic signaling in the evolution of nervous systems

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Germination of phagocytosed E. cuniculi spores does not significantly contribute to parasitophorous vacuole formation in J774 cells

    Get PDF
    The obligate intracellular microsporidia have developed a unique invasion mechanism to infect their host cells. Spores explosively evert a tube-like structure and extrude the infectious spore content through this organelle into the host cell. Spores from species of the genus Encephalitozoon were also shown to be efficiently internalized by phagocytosis, which led to the hypothesis that spore germination from inside a phagosome might contribute to the infection process. Here, we challenge this hypothesis by quantifying Encephalitozoon cuniculi infection rates of J774 cells that were incubated with the phagocytosis inhibitor cytochalasin D. We demonstrate that the invasion rate in cytochalasin D-treated cells is identical to untreated controls, although phagocytic uptake of E. cuniculi spores was less than 10% of control samples. This study suggests that germination of phagocytosed spores is not a significant infection mode for E. cuniculi

    Masked ambiguity – Emotion identification in schizophrenia and major depressive disorder

    Get PDF
    Both patients with schizophrenia and with a major depressive disorder (MDD) display deficits in identifying facial expressions of emotion during acute phases of their illness. However, specific deficit patterns have not yet been reliably demonstrated. Tasks that employ emotionally ambiguous stimuli have recently shown distinct deficit patterns in patients with schizophrenia compared to other mental disorders as well as healthy controls. We here investigate whether a task which uses an ambiguous Japanese (Noh) mask and a corresponding human stimulus generates distinctive emotion attribution patterns in thirty-two Caucasian patients with schizophrenia, matched MDD patients and healthy controls. Results show that patients with schizophrenia displayed reaction time disadvantages compared to healthy controls while identifying sadness and anger. MDD patients were more likely to label stimuli with basic compared to subtle emotional expressions. Moreover, they showed more difficulties assigning emotions to the human stimulus than to the Noh mask. IQ, age and cognitive functioning did not modulate these results. Because overall group differences were not observed, this task is not suitable for diagnosing patients. However, the subtle differences that did emerge might give therapists handles that can be used in therapy.Action Contro

    Choanoflagellates and the ancestry of neurosecretory vesicles

    Get PDF
    Neurosecretory vesicles are highly specialized trafficking organelles that store neurotransmitters that are released at presynaptic nerve endings and are, therefore, important for animal cell–cell signalling. Despite considerable anatomical and functional diversity of neurons in animals, the protein composition of neurosecretory vesicles in bilaterians appears to be similar. This similarity points towards a common evolutionary origin. Moreover, many putative homologues of key neurosecretory vesicle proteins predate the origin of the first neurons, and some even the origin of the first animals. However, little is known about the molecular toolkit of these vesicles in non-bilaterian animals and their closest unicellular relatives, making inferences about the evolutionary origin of neurosecretory vesicles extremely difficult. By comparing 28 proteins of the core neurosecretory vesicle proteome in 13 different species, we demonstrate that most of the proteins are present in unicellular organisms. Surprisingly, we find that the vesicular membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein synaptobrevin is localized to the vesicle-rich apical and basal pole in the choanoflagellate Salpingoeca rosetta. Our 3D vesicle reconstructions reveal that the choanoflagellates S. rosetta and Monosiga brevicollis exhibit a polarized and diverse vesicular landscape reminiscent of the polarized organization of chemical synapses that secrete the content of neurosecretory vesicles into the synaptic cleft. This study sheds light on the ancestral molecular machinery of neurosecretory vesicles and provides a framework to understand the origin and evolution of secretory cells, synapses and neurons. This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’

    Intensity of Resistance Exercise Determines Adipokine and Resting Energy Expenditure Responses in Overweight Elderly Individuals

    Get PDF
    OBJECTIVE - To evaluate the time course of leptin, adiponectin, and testing energy expenditure (REE) responses in overweight elderly mates after acute resistance exercise protocols of various intensity configurations. RESEARCH DESIGN AND METHODS - Forty inactive men (65-82 years) were randomly assigned to one of four groups (n = 10/group): control, low-intensity resistance exercise, moderate-intensity resistance exercise, and high-intensity resistance exercise. Exercise energy cost, REE, leptin, adiponectin, cortisol, insulin, lactate, glucose, nonesterified fatty acids (NEFAs), and glycerol were determined at baseline, immediately after exercise, and during a 72-h recovery period. RESULTS - Exercise energy cost was lower in high-intensity than in low-intensity and moderate-intensity groups (221.6 +/- 8.8 vs. 295.6 +/- 10.7 and 281.6 +/- 9.8 kcal, P < 0.001). Lactate, glucose, NEFAs, and glycerol concentrations increased (P < 0.001) after exercise and returned to baseline thereafter in all groups. REE increased (P < 0.001) in all groups at 12 h in an intensity-dependent manner (P < 0.05). REE reached baseline after 48 h in the low- and mode rate-intensity groups and after 72 h in the high-intensity group. Cortisol peaked in all active groups after exercise (P < 0.001) and remained elevated (P < 0.001) for 12 h. After adjustment for plasma volume shifts, leptin remained unaltered. Adiponectin concentration increased after 12 hand remained elevated for 24 h only in the high-intensity group (P < 0.001). CONCLUSIONS - Resistance exercise does not alter circulating leptin concentration but does increase REE and adiponectin in an intensity-dependent manner for as long as 48 and 24 h, respectively, in overweight elderly individuals. It appears that resistance exercise may represent an effective approach for weight management and metabolic control in overweight elderly individuals
    corecore