157 research outputs found
Gauging the three-nucleon spectator equation
We derive relativistic three-dimensional integral equations describing the
interaction of the three-nucleon system with an external electromagnetic field.
Our equations are unitary, gauge invariant, and they conserve charge. This has
been achieved by applying the recently introduced gauging of equations method
to the three-nucleon spectator equations where spectator nucleons are always on
mass shell. As a result, the external photon is attached to all possible places
in the strong interaction model, so that current and charge conservation are
implemented in the theoretically correct fashion. Explicit expressions are
given for the three-nucleon bound state electromagnetic current, as well as the
transition currents for the scattering processes
\gamma He3 -> NNN, Nd -> \gamma Nd, and \gamma He3 -> Nd. As a result, a
unified covariant three-dimensional description of the NNN-\gamma NNN system is
achieved.Comment: 23 pages, REVTeX, epsf, 4 Postscript figure
Relativistic Hamiltonians in many-body theories
We discuss the description of a many-body nuclear system using Hamiltonians
that contain the nucleon relativistic kinetic energy and potentials with
relativistic corrections. Through the Foldy-Wouthuysen transformation, the
field theoretical problem of interacting nucleons and mesons is mapped to an
equivalent one in terms of relativistic potentials, which are then expanded at
some order in 1/m_N. The formalism is applied to the Hartree problem in nuclear
matter, showing how the results of the relativistic mean field theory can be
recovered over a wide range of densities.Comment: 14 pages, uses REVTeX and epsfig, 3 postscript figures; a postscript
version of the paper is available by anonymous ftp at
ftp://carmen.to.infn.it/pub/depace/papers/951
Gauging the spectator equations
We show how to derive relativistic, unitary, gauge invariant, and charge
conserving three-dimensional scattering equations for a system of hadrons
interacting with an electromagnetic field. In the method proposed, the
spectator equations describing the strong interactions of the hadrons are
gauged using our recently introduced gauging of equations method. A key
ingredient in our model is the on-mass-shell particle propagator. We discuss
how to gauge this on-mass-shell propagator so that both the Ward-Takahashi and
Ward identities are satisfied. We then demonstrate our gauging procedure by
deriving the gauge-invariant three-dimensional expression for the deuteron
photodisintegration amplitude within the spectator approach.Comment: 17 pages, REVTeX, epsf, 1 Postscript figur
Friedel Oscillations in Relativistic Nuclear Matter
We calculate the low-momentum N-N effective potential obtained in the OBE
approximation, inside a nuclear plasma at finite temperature, as described by
the relativistic - model. We analyze the screening effects
on the attractive part of the potential in the intermediate range as density or
temperature increase. In the long range the potential shows Friedel-like
oscillations instead of the usual exponential damping. These oscillations arise
from the sharp edge of the Fermi surface and should be encountered in any
realistic model of nuclear matter.Comment: 11 pages in preprint format, typeset using REVTEX, 3 included figures
in tar, compressed, uuencoded forma
Pseudovector vs. pseudoscalar coupling in one-boson exchange NN potentials
We examine the effects of pseudoscalar and pseudovector coupling of the pi
and eta mesons in one-boson exchange models of the NN interaction using two
approaches: time-ordered perturbation theory unitarized with the relativistic
Lippmann-Schwinger equation, and a reduced Bethe-Salpeter equation approach
using the Thompson equation. Contact terms in the one-boson exchange amplitudes
in time-ordered perturbation theory lead naturally to the introduction of
s-channel nucleonic cutoffs for the interaction, which strongly suppresses the
far off-shell behavior of the amplitudes in both approaches. Differences
between the resulting NN predictions of the various models are found to be
small, and particularly so when coupling constants of the other mesons are
readjusted within reasonable limits.Comment: 24 pages, 4 figure
Relativistic effects and quasipotential equations
We compare the scattering amplitude resulting from the several quasipotential
equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator,
Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved
numerically without decomposition into partial waves. We analyze both
negative-energy state components of the propagators and retardation effects. We
found that the scattering solutions of the Spectator and the Equal-Time
equations are very close to the nonrelativistic solution even at high energies.
The overall relativistic effect increases with the energy. The width of the
band for the relative uncertainty in the real part of the scattering
matrix, due to different dynamical equations, is largest for
backward-scattering angles where it can be as large as 40%.Comment: Accepted for publication in Phys. Rev.
Off shell behaviour of the in medium nucleon-nucleon cross section
The properties of nucleon-nucleon scattering inside dense nuclear matter are
investigated. We use the relativistic Brueckner-Hartree-Fock model to determine
on-shell and half off-shell in-medium transition amplitudes and cross sections.
At finite densities the on-shell cross sections are generally suppressed. This
reduction is, however, less pronounced than found in previous works. In the
case that the outgoing momenta are allowed to be off energy shell the
amplitudes show a strong variation with momentum. This description allows to
determine in-medium cross sections beyond the quasi-particle approximation
accounting thereby for the finite width which nucleons acquire in the dense
nuclear medium. For reasonable choices of the in-medium nuclear spectral width,
i.e. MeV, the resulting total cross sections are, however,
reduced by not more than about 25% compared to the on-shell values. Off-shell
effect are generally more pronounced at large nuclear matter densities.Comment: 31 pages Revtex, 12 figures, typos corrected, to appear in Phys. Rev.
Temperature and Density Effects on the Nucleon Mass Splitting
The finite temperature and finite density dependence of the neutron-proton
mass difference is analysed in a purely hadronic framework where the
mixing is crucial for this isospin symmetry breakdown. The
problem is handled within Thermo Field Dynamics. The present results,
consistent with partial chiral and charge symmetry restoration, improve the
experimental data fit for the energy difference between mirror nuclei.Comment: 17 pages, revtex fil
What is the structure of the Roper resonance?
We investigate the structure of the nucleon resonance N^*(1440) (Roper)
within a coupled-channel meson exchange model for pion-nucleon scattering. The
coupling to pipiN states is realized effectively by the coupling to the sigmaN,
piDelta and rhoN channels. The interaction within and between these channels is
derived from an effective Lagrangian based on a chirally symmetric Lagrangian,
which is supplemented by well known terms for the coupling of the Delta isobar,
the omega meson and the 'sigma', which is the name given here to the strong
correlation of two pions in the scalar-isoscalar channel. In this model the
Roper resonance can be described by meson-baryon dynamics alone; no genuine
N^*(1440) (3 quark) resonance is needed in order to fit piN phase shifts and
inelasticities.Comment: 55 pages, 14 figure
Chiral 2pi exchange at order four and peripheral NN scattering
We calculate the impact of the complete set of two-pion exchange
contributions at chiral order four (also known as
next-to-next-to-next-to-leading order, N3LO) on peripheral partial waves of
nucleon-nucleon scattering. Our calculations are based upon the analytical
studies by Kaiser. It turns out that the contribution of order four is
substantially smaller than the one of order three, indicating convergence of
the chiral expansion. We compare the prediction from chiral pion-exchange with
the corresponding one from conventional meson-theory as represented by the Bonn
Full Model and find, in general, good agreement. Our calculations provide a
sound basis for investigating the issue whether the low-energy constants
determined from pi-N lead to reasonable predictions for NN.Comment: 22 pages RevTex including 11 figure
- …