5,241 research outputs found

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples

    Plaquette expectation value and gluon condensate in three dimensions

    Full text link
    In three dimensions, the gluon condensate of pure SU(3) gauge theory has ultraviolet divergences up to 4-loop level only. By subtracting the corresponding terms from lattice measurements of the plaquette expectation value and extrapolating to the continuum limit, we extract the finite part of the gluon condensate in lattice regularization. Through a change of regularization scheme to MSbar and (inverse) dimensional reduction, this result would determine the first non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure.Comment: 11 page

    Cygnus X-2: the Descendant of an Intermediate-Mass X-Ray Binary

    Full text link
    The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a secondary that is much more luminous and hotter than is appropriate for a low-mass subgiant. We present detailed binary-evolution calculations which demonstrate that the present evolutionary state of Cyg X-2 can be understood if the secondary had an initial mass of around 3.5 M_sun and started to transfer mass near the end of its main-sequence phase (or, somewhat less likely, just after leaving the main sequence). Most of the mass of the secondary must have been ejected from the system during an earlier rapid mass-transfer phase. In the present phase, the secondary has a mass of around 0.5 M_sun with a non-degenerate helium core. It is burning hydrogen in a shell, and mass transfer is driven by the advancement of the burning shell. Cyg X-2 therefore is related to a previously little studied class of intermediate-mass X-ray binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray binaries presently classified as low-mass X-ray binaries may be descendants of IMXBs and discuss some of the implications

    Panchromatic and Spectral Characterization of Cu Contaminated Semi-Insulating GaAs

    Get PDF
    Panchromatic (integral) and spectrally resolved cathodoluminescence characterization was used to investigate the near surface gettering properties of Cu in liquid-encapsulated, Czochralski-grown, undoped semi-insulating (SI) GaAs. Samples from two sources were investigated to determine if gettering treatments applied to GaAs result in improvements in uniformity similar to those observed in gettered Si. Before Cu contamination, typical cellular structure is observed for all samples. Experimentally, it is found that the panchromatic CL images change significantly after Cu doping and subsequent gettering processing for all samples. A contrast reversal is generally observed after Cu contamination. After gettering, the image of the samples from one source remained reversed whereas the image of samples from the other source showed a second contrast reversal. Typically, both samples exhibit bright regions after gettering which closely correspond to the dislocation structure. More detailed spectrally resolved CL indicates that Cu luminescence correlates well in most cases with the band edge emission. In only a few cases were discernible differences noted. It is concluded that Cu is observed in locations from which nonradiative recombination centers have been effectively removed

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements

    Get PDF
    Label-free biosensor technology based on dynamic mass redistribution (DMR) of cellular constituents promises to translate GPCR signaling into complex optical 'fingerprints' in real time in living cells. Here we present a strategy to map cellular mechanisms that define label-free responses, and we compare DMR technology with traditional second-messenger assays that are currently the state of the art in GPCR drug discovery. The holistic nature of DMR measurements enabled us to (i) probe GPCR functionality along all four G-protein signaling pathways, something presently beyond reach of most other assay platforms; (ii) dissect complex GPCR signaling patterns even in primary human cells with unprecedented accuracy; (iii) define heterotrimeric G proteins as triggers for the complex optical fingerprints; and (iv) disclose previously undetected features of GPCR behavior. Our results suggest that DMR technology will have a substantial impact on systems biology and systems pharmacology as well as for the discovery of drugs with novel mechanisms

    Envelope Ejection: an Alternative Process for some Early Case B Binaries

    Full text link
    We discuss the evolution of binaries with moderately high masses (about 10 - 30 solar masses), and with periods of about 3 - 300d, corresponding mostly to early Case B. These are usually thought to evolve either by reasonably conservative Roche-lobe overflow, if the initial mass ratio is fairly mild, or else by highly non-conservative common-envelope evolution, with spiral-in to short periods (hours, typically), if the initial mass ratio is rather extreme. We discuss here a handful of binaries from part of this period range (about 50 - 250d), which appear to have followed a different path: we argue that they must have lost a large proportion of initial mass (about 70 - 80%), but without shortening their periods at all. We suggest that their behaviour may be due to the fact that stars of such masses, when evolved also to rather large radii, are not far from the Humphreys-Davidson limit where single stars lose their envelopes spontaneously in P Cygni winds, and so have envelopes which are only lightly bound to the core. These envelopes therefore may be relatively easily dissipated by the perturbing effect of a companion. In addition, some or all of the stars considered here may have been close to the Cepheid instability strip when they filled their Roche lobes. One or other, or both, of high luminosity and Cepheid instability, in combination with an appropriately close binary companion, may be implicated

    Leptonic constant of pseudoscalar B_c meson

    Full text link
    We calculate the leptonic constant for the ground pseudoscalar state of B_c meson in the framework of QCD-motivated potential model taking into account the two-loop anomalous dimension for the heavy quark current in the nonrelativistic QCD as matched with the full QCD.Comment: 6 pages, RevTeX4 file, 3 eps-figures, several references and remarks adde

    Optically tuned dimensionality crossover in photocarrier-doped SrTiO3_3: onset of weak localization

    Full text link
    We report magnetotransport properties of photogenerated electrons in undoped SrTiO3_3 single crystals under ultraviolet illumination down to 2 K. By tuning the light intensity, the steady state carrier density can be controlled, while tuning the wavelength controls the effective electronic thickness by modulating the optical penetration depth. At short wavelengths, when the sheet conductance is close to the two-dimensional Mott minimum conductivity we have observed critical behavior characteristic of weak localization. Negative magnetoresistance at low magnetic field is highly anisotropic, indicating quasi-two-dimensional electronic transport. The high mobility of photogenerated electrons in SrTiO3_3 allows continuous tuning of the effective electronic dimensionality by photoexcitation.Comment: 7 pages, 7 figure
    corecore