4,358 research outputs found

    Bipartite entanglement entropy in fractional quantum Hall states

    Get PDF
    We present a detailed analysis of bipartite entanglement entropies in fractional quantum Hall (FQH) states, considering both abelian (Laughlin) and non-abelian (Moore-Read) states. We derive upper bounds for the entanglement between two subsets of the particles making up the state. We also consider the entanglement between spatial regions supporting a FQH state. Using the latter, we show how the so-called topological entanglement entropy of a FQH state can be extracted from wavefunctions for a limited number of particles.Comment: 12 pages, 7 figures, small corrections to table III and references adde

    Three-vortex configurations in trapped Bose-Einstein condensates

    Full text link
    We report on the creation of three-vortex clusters in a 87Rb^{87}Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation, and as a vortex-antivortex-vortex cluster. The linear configurations are very likely the first experimental signatures of predicted stationary vortex clusters.Comment: 4 pages, 4 figure

    Effects of polar cosolvents on cocoa butter extraction using supercritical carbon dioxide

    Get PDF
    Cocoa butter was successfully extracted from cocoa liquor by supercritical carbondi oxide (SC-CO2) at 35 MPa, 60 oC and 2 mL/min with 5%, 15% and 25% cosolvents. The extraction yield of tryglicerides (TG) and fatty acid (FA) compositions were significantly influenced by the concentration of polar cosolvents. The SC-CO2 extraction efficiency was increased with cosolvent significantly. Ethanol was found to be the best cosolvent for cocoa butter extraction using SC-CO2 followed by isopropanol and acetone. The triglycerides of POP, POS and SOS were contained in the extracted cocoa butter with POS being the major component. Where palmitic, stearic and oleic were the main fatty acids in the cocoa butter samples, with stearic being the highest component. The lower molecular weight (MW) of TGs and FAs showed the higher selectivity compared to the high MW of TGs and FAs. Thus, they were fractionated during the first stage of SC-CO2 process

    Draft proposal for establishment of CNC centre at NAL

    Get PDF
    This is a proposal for setting up Computer Numerically Controlled machining facilities at N.A.L. to cater to the increasing requirements for fabrication of complex shaped and intricate/precision components for the aerospace R & D projects of the laboratory for the next 10 - year period. This fairly comprehensive document has been prepared by an internal technical committee constituted by the Director, after detailed study and discussions and covers the technical and financial aspects for setting up such facilities

    A Numerical Model of an Electrostatic Precipitator

    Get PDF
    This paper presents a Computational Fluid Dynamics (CFD) model for a wire-plate electrostatic precipitator (ESP). The turbulent gas flow and the particle motion under electrostatic forces are modelled using the CFD code FLUENT. Numerical calculations for the gas flow are carried out by solving the Reynolds-averaged Navier-Stokes equations and turbulence is modelled using the k-ε turbulence model. An additional source term is added to the gas flow equation to capture the effect of electric field. This additional source term is obtained by solving a coupled system of the electric field and charge transport equations. The particle phase is simulated by using Discrete Phase Model (DPM). The results of the simulation are presented showing the particle trajectory inside the ESP under the influence of both aerodynamic and electrostatic forces. The simulated results have been validated by the established data. The model developed is useful to gain insight into the particle collection phenomena that takes place inside an industrial ESP

    Asymmetric Fermi superfluid in a harmonic trap

    Full text link
    We consider a dilute two-component atomic fermion gas with unequal populations in a harmonic trap potential using the mean field theory and the local density approximation. We show that the system is phase separated into concentric shells with the superfluid in the core surrounded by the normal fermion gas in both the weak-coupling BCS side and near the Feshbach resonance. In the strong-coupling BEC side, the composite bosons and left-over fermions can be mixed. We calculate the cloud radii and compare axial density profiles systemically for the BCS, near resonance and BEC regimes.Comment: 15 pages, 5 figure

    Entanglement between particle partitions in itinerant many-particle states

    Full text link
    We review `particle partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum systems. We formulate the general structure of particle entanglement in many-fermion ground states, analogous to the `area law' for the more usually studied entanglement between spatial regions. Basic properties of particle entanglement are first elucidated by considering relatively simple itinerant models. We then review particle-partitioning entanglement in quantum states with more intricate physics, such as anyonic models and quantum Hall states.Comment: review, about 20 pages. Version 2 has minor revisions

    A unique bacteriohopanetetrol stereoisomer of marine anammox

    Get PDF
    Anaerobic ammonium oxidation (anammox) is a major process of bioavailable nitrogen removal from marine systems. Previously, a bacteriohopanetetrol (BHT) isomer, with unknown stereochemistry, eluting later than BHT using high performance liquid chromatography (HPLC), was detected in ‘Ca. Scalindua profunda’ and proposed as a biomarker for anammox in marine paleo-environments. However, the utility of this BHT isomer as an anammox biomarker is hindered by the fact that four other, non-anammox bacteria are also known to produce a late-eluting BHT stereoisomer. The stereochemistry in Acetobacter pasteurianus, Komagataeibacter xylinus and Frankia sp. was known to be 17β, 21β(H), 22R, 32R, 33R, 34R (BHT-34R). The stereochemistry of the late-eluting BHT in Methylocella palustris was unknown. To determine if marine anammox bacteria produce a unique BHT isomer, we studied the BHT distributions and stereochemistry of known BHT isomer producers and of previously unscreened marine (‘Ca. Scalindua brodeae’) and freshwater (‘Ca. Brocadia sp.’) anammox bacteria using HPLC and gas chromatographic (GC) analysis of acetylated BHTs and ultra high performance liquid chromatography (UHPLC)-high resolution mass spectrometry (HRMS) analysis of non-acetylated BHTs. The 34R stereochemistry was confirmed for the BHT isomers in Ca. Brocadia sp. and Methylocella palustris. However, ‘Ca. Scalindua sp.’ synthesise a stereochemically distinct BHT isomer, with still unconfirmed stereochemistry (BHT-x). Only GC analysis of acetylated BHT and UHPLC analysis of non-acetylated BHT distinguished between late-eluting BHT isomers. Acetylated BHT-x and BHT-34R co-elute by HPLC. As BHT-x is currently only known to be produced by ‘Ca. Scalindua spp.’, it may be a biomarker for marine anammox

    Power management and control strategies for efficient operation of a solar power dominated hybrid DC microgrid for remote power applications

    Full text link
    In this paper, a hybrid DC microgrid consisting of a diesel generator with a rectifier, a solar photovoltaic (PV) system, and a battery energy storage system is presented in relation to an effective power management strategy and different control techniques are adopted to power electronic interfaces. The solar PV and battery energy storage systems are considered as the main sources of energy sources that supply the load demand on a daily basis whereas the diesel generator is used as a backup for the emergency operation of the microgrid. All system components are connected to a common DC bus through an appropriate power electronics devices (e.g., rectifier systems, DC/DC converter). Also a detailed sizing philosophy of all components along with the energy management strategy is proposed. Energy distribution pattern of each individual component has been conducted based on the monthly basis along with a power management algorithm. The power delivered by the solar PV system and diesel generator is controlled via DC-DC converterand excitation controllers which are designed based on a linearquadratic regulator (LQR) technique as as proportional integral (PI)controllers. The component level power distribution is investigatedusing these controllers under fluctuating load and solar irradiationconditions and comparative results are presented
    corecore