1,936 research outputs found

    Symbiosis through exploitation and the merger of lineages in evolution

    Get PDF
    A model for the coevolution of two species in facultative symbiosis is used to investigate conditions under which species merge to form a single reproductive unit. Two traits evolve in each species, the first affecting loss of resources from an individual to its partner, and the second affecting vertical transmission of the symbiosis from one generation to the next. Initial conditions are set so that the symbiosis involves exploitation of one partner by the other and vertical transmission is very rare. It is shown that, even in the face of continuing exploitation, a stable symbiotic unit can evolve with maximum vertical transmission of the partners. Such evolution requires that eventually deaths should exceed births for both species in the free-living state, a condition which can be met if the victim, in the course of developing its defences, builds up sufficiently large costs in the free-living state. This result expands the set of initial conditions from which separate lineages can be expected to merge into symbiotic units

    Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas

    Full text link
    The filamentation instability driven by two spatially uniform and counter-streaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the electrons of one beam and the positrons of the second beam match. The simulation demonstrates that as a result no electrostatic field is generated by the magnetic field through its magnetic pressure gradient prior to its saturation. This electrostatic field would be repulsive at the centres of the filaments and limit the maximum charge and current density. The filaments of electrons and positrons in this simulation reach higher charge and current densities than in one with no positrons. The oscillations of the magnetic field strength induced by the magnetically trapped particles result in an oscillatory magnetic pressure gradient force. The latter interplays with the statistical fluctuations in the particle density and it probably enforces a charge separation, by which electrostatic waves grow after the filamentation instability has saturated.Comment: 13 pages, 8 figure

    Self-extinction through optimizing selection

    Get PDF
    Evolutionary suicide is a process in which selection drives a viable population to extinction. So far such selection-driven self-extinction has been demonstrated in models with frequency-dependent selection. This is not surprising, since frequency-dependent selection can disconnect individual-level and population-level interests through environmental feedback. Hence it can lead to situations akin to the tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing. Together, all published studies of evolutionary suicide have created the impression that evolutionary suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and analyzing an example in which optimizing selection causes self-extinction. We then take this line of argument one step further by showing, in a further example, that selection-driven self-extinction can occur even under frequency-independent selection

    Function-Valued Adaptive Dynamics and the Calculus of Variations

    Get PDF
    Adaptive dynamics has been widely used to study the evolution of scalar-valued, and occasionally vector-valued, strategies in ecologically realistic models. In many ecological situations, however, evolving strategies are best described as function-valued, and thus infinite-dimensional, traits. So far, such evolution has only been studied sporadically, mostly based on quantitative genetics models with limited ecological realism. In this article we show how to apply the calculus of variations to find evolutionarily singular strategies of function-valued adaptive dynamics: such a strategy has to satisfy Euler's equation with environmental feedback. We also demonstrate how second-order derivatives can be used to investigate whether or not a function-valued singular strategy is evolutionarily stable. We illustrate our approach by presenting several worked examples

    The Adaptive Dynamics of Function-valued Traits

    Get PDF
    This study extends the framework of adaptive dynamics to function-valued traits. Such adaptive traits naturally arise in a great variety of settings: variable or heterogeneous environments, age-structured populations, phenotypic plasticity, patterns of growth and form, resource gradients, and in many other areas of evolutionary ecology. Adaptive dynamics theory allows analyzing the long-term evolution of such traits under the density-dependent and frequency-dependent selection pressures resulting from feedback between evolving populations and their ecological environment. Starting from individual-based considerations, we derive equations describing the expected dynamics of a function-valued trait in asexually reproducing populations under mutation-limited evolution, thus generalizing the canonical equation of adaptive dynamics to function-valued traits. We explain in detail how to account for various kinds of evolutionary constraints on the adaptive dynamics of function-valued traits. To illustrate the utility of our approach, we present applications to two specific examples that address, respectively, the evolution of metabolic investment strategies along resource gradients, and the evolution of seasonal flowering schedules in temporally varying environments

    Evolutionary Suicide and Evolution of Dispersal in Structured Metapopulations

    Get PDF
    In this article we study the evolution of dispersal in a structured metapopulation model. The metapopulation consists of a large (infinite)number of local populations living in patches of habitable environment. Dispersal between patches is modeled by a disperser pool and individuals in transit between patches are exposed to a risk of mortality. Occasionally, local catastrophes eradicate a local population: all individuals in the affected patch die, yet the patch remains habitable. The rate at which such disasters occur can depend on the local population size of a patch. We prove that, in the absence of catastrophes, the strategy not to migrate is evolutionarily stable. It is also convergence stable unless there is no mortality during dispersal. Under a given set of environmental conditions, a metapopulation may be viable and yet selection may favor dispersal rates that drive the metapopulation to extinction. This phenomenon is known as evolutionary suicide. We show that in our model evolutionary suicide can occur for certain types of size-dependent catastrophes. Evolutionary suicide can also happen for constant catastrophe rates, if local growth within patches shows an Allee effect. We study the evolutionary bifurcation towards evolutionary suicide and show that a discontinuous transition to extinction is a necessary condition for evolutionary suicide to occur. In other words, if population size smoothly approaches zero at a boundary of viability in parameter space, this boundary is evolutionarily repelling and no suicide can occur

    Surfatron and stochastic acceleration of electrons in astrophysical plasmas

    Get PDF
    Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe\omega_{\rm pe} by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe\omega_{\rm pe} is much higher than the electron cyclotron frequency Ωe\Omega_{\rm e}, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωe\omega_{\rm pe}/\Omega_{\rm e} and the size of the simulation box LL. If LL is equal to one wavelength, λ0\lambda_0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ωe≃100\omega_{\rm pe}/\Omega_{\rm e} \simeq 100: in this case electrons are accelerated to speeds of up c/2c/2 where cc is the speed of light. In a simulation with L=4λ0L=4\lambda_0 and ωpe/Ωe=100\omega_{\rm pe}/\Omega_{\rm e} = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if ωpe/Ωe>100\omega_{\rm pe}/\Omega_{\rm e}> 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks

    Stabilisation of BGK modes by relativistic effects

    Get PDF
    Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and the creation of the required energetic seed population for first order Fermi acceleration at the shock front. Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams. Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c. Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma
    • …
    corecore