1,530 research outputs found

    Determination of the magnetization profile of Co/Mg periodic multilayers by magneto-optic Kerr effect and X-ray magnetic resonant reflectivity

    Full text link
    The resonant magnetic reflectivity of Co/Mg multilayers around the Co L2,3 absorption edge is simulated then measured on a specifically designed sample. The dichroic signal is obtained when making the difference between the two reflectivities measured with the magnetic field applied in two opposite directions parallel to the sample surface. The simulations show that the existence of magnetic dead layers at the interfaces between the Co and Mg layers leads to an important increase of the dichroic signal measured in the vicinity of the third Bragg peak that otherwise should be negligible. The measurements are in agreement with the model introducing 0.25 nm thick dead layers. This is attributed to the Co atoms in contact with the Mg layers and thus we conclude that the Co-Mg interfaces are abrupt from the magnetic point of view.Comment: 8 page

    Curvature driven diffusion, Rayleigh-Plateau, and Gregory-Laflamme

    Full text link
    It can be expected that the respective endpoints of the Gregory-Laflamme black brane instability and the Rayleigh-Plateau membrane instability are related because the bifurcation diagrams of the black hole-black string system and the liquid drop-liquid bridge system display many similarities. In this paper, we investigate the non-linear dynamics of the Rayleigh-Plateau instability in a range of dimensions, including the critical dimension at which the phase structure changes. We show that near the critical dimension and above, depending on a parameter in initial conditions an unstable cylinder will either pinch off or converge to an equilibrium state. The equilibrium state is apparently non-uniform but has a constant mean curvature everywhere. The results suggest that in the gravity side, near the critical dimension and above, the final state of an unstable black string (which is not too long) is a non-uniform black string. The equation of motion adopted to describe the dynamics is the surface diffusion equation, which was originally proposed to describe a grooving process of heated metal surfaces. An interesting correspondence between the diffusion dynamics and black hole (thermo)dynamics is discussed.Comment: 14 pages, 5 figures; v2: references added, typos fixe

    Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale

    Full text link
    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale 100\sim 100 GeV. We also discuss inflation as well as gravity wave smoking gun signatures of this class of models.Comment: 22 pages, 7 figure

    Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry

    Get PDF
    We derive generic predictions at hadron colliders from the large forward-backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron t \bar t data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet bounds and UV completions; matches published versio

    Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    Full text link
    A recent study of soft X-ray absorption in native and hydrogenated coronene cations, C24_{24}H12+m+_{12+m}^+ m=07m=0-7, led to the conclusion that additional hydrogen atoms protect (interstellar) Polycyclic Aromatic Hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014)]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16_{16}H10+m+_{10+m}^+, m=0m=0, 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.Comment: 10 pages, 5 figure

    The N = 16 spherical shell closure in 24O

    Full text link
    The unbound excited states of the neutron drip-line isotope 24O have been investigated via the 24O(p,p')23O+n reaction in inverse kinematics at a beam energy of 62 MeV/nucleon. The decay energy spectrum of 24O* was reconstructed from the momenta of 23O and the neutron. The spin-parity of the first excited state, observed at Ex = 4.65 +/- 0.14 MeV, was determined to be Jpi = 2+ from the angular distribution of the cross section. Higher lying states were also observed. The quadrupole transition parameter beta2 of the 2+ state was deduced, for the first time, to be 0.15 +/- 0.04. The relatively high excitation energy and small beta2 value are indicative of the N = 16 shell closure in 24O.Comment: to be submitted to Physical Review Letter

    Retinal safety of intravitreal rtPA in healthy rats and under excitotoxic conditions.

    Get PDF
    Intravitreal recombinant tissue plasminogen activator (rtPA) is used off-label for the surgical management of submacular hemorrhage, a severe complication of neovascular age-related macular degeneration. rtPA is approved for coronary and cerebral thrombolysis. However, in ischemic stroke rtPA is known to increase excitotoxic neural cell death by interacting with the N-methyl-D-aspartate (NMDA) receptor. We therefore investigated the retinal toxicity of rtPA in healthy rats and in a model of NMDA-induced retinal excitotoxicity. First, rtPA at three different doses (2.16 µg/5 µl, 0.54 µg/5 µl, and 0.27 µg/5 µl) or vehicle (NaCl 0.9%) was injected intravitreally in healthy rat eyes. Electroretinograms (ERGs) were performed at 24 h or 7 days. Annexin V-fluorescein isothiocyanate (FITC)-labeled apoptotic retinal ganglion cells (RGCs) were counted on flatmounted retinas at 24 h or 7 days. Next, NMDA + vehicle or NMDA + rtPA (0.27 µg/5 µl) was injected intravitreally to generate excitotoxic conditions. Apoptotic annexin V-FITC-labeled RGCs and surviving Brn3a-labeled RGCs were quantified on flatmounted retinas and radial sections, 18 h after treatment. In healthy rat eyes, the number of apoptotic RGCs was statistically significantly increased 24 h after the administration of rtPA at the highest dose (2.16 µg/5 µl; p = 0.0250) but not at the lower doses of 0.54 and 0.27 µg/5 µl (p = 0.36 and p = 0.20), compared to vehicle. At day 7, there was no difference in the apoptotic RGC count between the rtPA- and vehicle-injected eyes (p = 0.70, p = 0.52, p = 0.11). ERG amplitudes and implicit times were not modified at 24 h or 7 days after injection of any tested rtPA doses, compared to the baseline. Intravitreal administration of NMDA induced RGC death, but under these excitotoxic conditions, coadministration of rtPA did not increase the number of dead RGCs (p = 0.70). Similarly, the number of surviving RGCs on the flatmounted retinas and retinal sections did not differ between the eyes injected with NMDA + vehicle and NMDA + rtPA (p = 0.59 and p = 0.67). At low clinical equivalent doses corresponding to 25 µg/0.1 ml in humans, intravitreal rtPA is not toxic for healthy rat retinas and does not enhance NMDA-induced excitotoxicity. Vitreal equivalent doses ≥200 µg/0.1 ml should be avoided in patients, due to potential RGC toxicity
    corecore