113 research outputs found
Analysis and computations for a model of quasi-static deformation of a thinning sheet arising in superplastic forming
We consider a mathematical model for the quasi-static deformation of a thinning sheet. The model couples a first-order equation for the thickness of the sheet to a prescribed curvature equation for the displacement of the sheet. We prove a local in time existence and uniqueness theorem for this system when the sheet can be written as a graph. A contact problem is formulated for a sheet constrained to be above a mould. Finally we present some computational results
Sufficient conditions for unique global solutions in optimal control of semilinear equations with nonlinearity
We consider a semilinear elliptic optimal control problem possibly
subject to control and/or state constraints. Generalizing previous work we
provide a condition which guarantees that a solution of the necessary first
order conditions is a global minimum. A similiar result also holds at the
discrete level where the corresponding condition can be evaluated explicitly.
Our investigations are motivated by G\"unter Leugering, who raised the question
whether our previous results can be extended to the nonlinearity
. We develop a corresponding analysis and present several
numerical test examples demonstrating its usefulness in practice
Semilinear mixed problems on Hilbert complexes and their numerical approximation
Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010),
281-354] that linear, mixed variational problems, and their numerical
approximation by mixed finite element methods, can be studied using the
powerful, abstract language of Hilbert complexes. In another recent article
[arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing
variational crimes (a la Strang) on Hilbert complexes. In particular, this gave
a treatment of finite element exterior calculus on manifolds, generalizing
techniques from surface finite element methods and recovering earlier a priori
estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk
[Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J.
Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we
extend the Hilbert complex framework in a second distinct direction: to the
study of semilinear mixed problems. We do this, first, by introducing an
operator-theoretic reformulation of the linear mixed problem, so that the
semilinear problem can be expressed as an abstract Hammerstein equation. This
allows us to obtain, for semilinear problems, a priori solution estimates and
error estimates that reduce to the Arnold-Falk-Winther results in the linear
case. We also consider the impact of variational crimes, extending the results
of our previous article to these semilinear problems. As an immediate
application, this new framework allows for mixed finite element methods to be
applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error
estimates in Section
Unfitted finite element methods using bulk meshes for surface partial differential equations
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ⊂Rn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, Th, of (n+1)-simplices. The finite element approximating space is based on continuous piece-wise linear finite element functions on Th. Our first method is a sharp interface method, \emph{SIF}, which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γh, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes \emph{SIF} from the method of [42]. The second method, \emph{NBM}, is a narrow band method in which the region of integration is a narrow band of width O(h). \emph{NBM} is similar to the method of [13]. but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L2 and H1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection diffusion conservation law. Numerical results are given which illustrate the rates of convergence
Stability and error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface
In this paper we analyze a fully discrete numerical scheme for solving a parabolic PDE on a moving surface. The method is based on a diffuse interface approach that involves a level set description of the moving surface. Under suitable conditions on the spatial grid size, the time step and the interface width we obtain stability and error bounds with respect to natural norms. Furthermore, we present test calculations that confirm our analysis
Parameter identification problems in the modelling of cell motility
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree
Error estimates for the discretization of the velocity tracking problem
In this paper we are continuing our work (Casas and Chrysafinos, SIAM J Numer Anal 50(5):2281–2306, 2012), concerning a priori error estimates for the velocity tracking of two-dimensional evolutionary Navier–Stokes flows. The controls are of distributed type, and subject to point-wise control constraints. The discretization scheme of the state and adjoint equations is based on a discontinuous time-stepping scheme (in time) combined with conforming finite elements (in space) for the velocity and pressure. Provided that the time and space discretization parameters, t and h respectively, satisfy t = Ch2, error estimates of order O(h2) and O(h 3/2 – 2/p ) with p > 3 depending on the regularity of the target and the initial velocity, are proved for the difference between the locally optimal controls and their discrete approximations, when the controls are discretized by the variational discretization approach and by using piecewise-linear functions in space respectively. Both results are based on new duality arguments for the evolutionary Navier–Stokes equations
A classification theorem for Helfrich surfaces
In this paper we study the functional \SW_{\lambda_1,\lambda_2}, which is
the the sum of the Willmore energy, -weighted surface area, and
-weighted volume, for surfaces immersed in . This coincides
with the Helfrich functional with zero `spontaneous curvature'. Our main result
is a complete classification of all smooth immersed critical points of the
functional with and small norm of tracefree curvature. In
particular we prove the non-existence of critical points of the functional for
which the surface area and enclosed volume are positively weighted.Comment: 21 page
A variational formulation of anisotropic geometric evolution equations in higher dimensions
Accepted versio
- …