614 research outputs found

    Continuous upflows and sporadic downflows observed in active regions

    Full text link
    We present a study of the temporal evolution of coronal loops in active regions and its implications for the dynamics in coronal loops. We analyzed images of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) at multiple temperatures to detect apparent motions in the coronal loops. Quasi-periodic brightness fluctuations propagate upwards from the loop footpoint in hot emission at 1MK, while sporadic downflows are seen in cool emission below 1MK. The upward motion in hot emission increases just after the cool downflows. The apparent propagating pattern suggests a hot upflow from the loop footpoints, and is considered to supply hot plasma into the coronal loop, but a wavelike phenomenon cannot be ruled out. Coronal condensation occasionally happens in the coronal loop, and the cool material flows down to the footpoint. Emission from cool plasma could have a significant contribution to hot AIA channels in the event of coronal condensation.Comment: 5 pages, 6 figures, A&A in pres

    A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere

    Full text link
    We use high-resolution observations of the Sun in Ca II H 3968 A from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties. ``Type-I'' spicules are driven by shock waves that form when global oscillations and convective flows leak into the upper atmosphere along magnetic field lines on 3-7 minute timescales. ``Type-II'' spicules are much more dynamic: they form rapidly (in ~10s), are very thin (<200km wide), have lifetimes of 10-150s (at any one height) and seem to be rapidly heated to (at least) transition region temperatures, sending material through the chromosphere at speeds of order 50-150 km/s. The properties of Type II spicules suggest a formation process that is a consequence of magnetic reconnection, typically in the vicinity of magnetic flux concentrations in plage and network. Both types of spicules are observed to carry Alfven waves with significant amplitudes of order 20 km/s.Comment: 8 pages, 5 figures, accepted for Hinode special issue of PAS

    A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs

    Full text link
    In this paper we generalize N-fold integer programs and two-stage integer programs with N scenarios to N-fold 4-block decomposable integer programs. We show that for fixed blocks but variable N, these integer programs are polynomial-time solvable for any linear objective. Moreover, we present a polynomial-time computable optimality certificate for the case of fixed blocks, variable N and any convex separable objective function. We conclude with two sample applications, stochastic integer programs with second-order dominance constraints and stochastic integer multi-commodity flows, which (for fixed blocks) can be solved in polynomial time in the number of scenarios and commodities and in the binary encoding length of the input data. In the proof of our main theorem we combine several non-trivial constructions from the theory of Graver bases. We are confident that our approach paves the way for further extensions

    Identification of different types of kink modes in coronal loops: principles and application to TRACE results

    Full text link
    We explore the possible observational signatures of different types of kink modes (horizontal and vertical oscillations in their fundamental mode and second harmonic) that may arise in coronal loops, with the aim of determining how well the individual modes can be uniquely identified from time series of images. A simple, purely geometrical model is constructed to describe the different types of kink-mode oscillations. These are then `observed' from a given direction. In particular, we employ the 3D geometrical parameters of 14 TRACE loops of transverse oscillations to try to identify the correct observed wave mode. We find that for many combinations of viewing and loop geometry it is not straightforward to distinguish between at least two types of kink modes just using time series of images. We also considered Doppler signatures and find that these can help obtain unique identifications of the oscillation modes when employed in combination with imaging. We then compare the modeled spatial signatures with the observations of 14 TRACE loops. We find that out of three oscillations previously identified as fundamental horizontal mode oscillations, two cases appear to be fundamental vertical mode oscillations (but possibly combined with the fundamental horizontal mode), and one case appears to be a combination of the fundamental vertical and horizontal modes, while in three cases it is not possible to clearly distinguish between the fundamental mode and the second-harmonic of the horizontal oscillation. In five other cases it is not possible to clearly distinguish between a fundamental horizontal mode and the second-harmonic of a vertical mode.Comment: 12 pages, 10 figures, 2 tables. A&A in pres

    Sparse Sums of Positive Semidefinite Matrices

    Full text link
    Recently there has been much interest in "sparsifying" sums of rank one matrices: modifying the coefficients such that only a few are nonzero, while approximately preserving the matrix that results from the sum. Results of this sort have found applications in many different areas, including sparsifying graphs. In this paper we consider the more general problem of sparsifying sums of positive semidefinite matrices that have arbitrary rank. We give several algorithms for solving this problem. The first algorithm is based on the method of Batson, Spielman and Srivastava (2009). The second algorithm is based on the matrix multiplicative weights update method of Arora and Kale (2007). We also highlight an interesting connection between these two algorithms. Our algorithms have numerous applications. We show how they can be used to construct graph sparsifiers with auxiliary constraints, sparsifiers of hypergraphs, and sparse solutions to semidefinite programs

    Observations of quasi-periodic phenomena associated with a large blowout solar jet

    Get PDF
    A variety of periodic phenomena have been observed in conjunction with large solar jets. We aim to find further evidence for {(quasi-)}periodic behaviour in solar jets and determine what the periodic behaviour can tell us about the excitation mechanism and formation process of the large solar jet. Using the 304 {\AA} (He-II), 171 {\AA} (Fe IX), 193 {\AA} (Fe XII/XXIV) and 131 {\AA} (Fe VIII/XXI) filters on-board the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), we investigate the intensity oscillations associated with a solar jet. Evidence is provided for multiple magnetic reconnection events occurring between a pre-twisted, closed field and open field lines. Components of the jet are seen in multiple SDO/AIA filters covering a wide range of temperatures, suggesting the jet can be classified as a blowout jet. Two bright, elongated features are observed to be co-spatial with the large jet, appearing at the jet's footpoints. Investigation of these features reveal they are defined by multiple plasma ejections. The ejecta display (quasi-)periodic behaviour on timescales of 50 s and have rise velocities of 40-150 km\,s−1^{-1} along the open field lines. Due to the suggestion that the large jet is reconnection-driven and the observed properties of the ejecta, we further propose that these ejecta events are similar to type-II spicules. The bright features also display (quasi)-periodic intensity perturbations on the timescale of 300 s. Possible explanations for the existence of the (quasi-)periodic perturbations in terms of jet dynamics and the response of the transition region are discussed.Comment: Astronomy and Astrophysics - In Prin
    • …
    corecore