16,262 research outputs found

    Costs and Benefits to Business of Adopting Work Life Balance Working Practices: A Literature Review

    Get PDF

    Investigation of sputtering effects on the moon's surface Eleventh quarterly status report, 25 Oct. 1965 - 24 Jan. 1966

    Get PDF
    Implications of Lunar 9 moon probe, sputtering yield reduction due to surface roughness, water formation by solar wind bombardment, photometric function of moon, and chemical sputterin

    Randomised field trial to evaluate serological response after foot-and-mouth disease vaccination in Turkey

    Get PDF
    AbstractDespite years of biannual mass vaccination of cattle, foot-and-mouth disease (FMD) remains uncontrolled in Anatolian Turkey. To evaluate protection after mass vaccination we measured post-vaccination antibodies in a cohort of cattle (serotypes O, A and Asia-1). To obtain results reflecting typical field protection, participants were randomly sampled from across Central and Western Turkey after routine vaccination. Giving two-doses one month apart is recommended when cattle are first vaccinated against FMD. However, due to cost and logistics, this is not routinely performed in Turkey, and elsewhere. Nested within the cohort, we conducted a randomised trial comparing post-vaccination antibodies after a single-dose versus a two-dose primary vaccination course.Four to five months after vaccination, only a third of single-vaccinated cattle had antibody levels above a threshold associated with protection. A third never reached this threshold, even at peak response one month after vaccination. It was not until animals had received three vaccine doses in their lifetime, vaccinating every six months, that most (64% to 86% depending on serotype) maintained antibody levels above this threshold. By this time cattle would be >20 months old with almost half the population below this age. Consequently, many vaccinated animals will be unprotected for much of the year. Compared to a single-dose, a primary vaccination course of two-doses greatly improved the level and duration of immunity. We concluded that the FMD vaccination programme in Anatolian Turkey did not produce the high levels of immunity required. Higher potency vaccines are now used throughout Turkey, with a two-dose primary course in certain areas.Monitoring post-vaccination serology is an important component of evaluation for FMD vaccination programmes. However, consideration must be given to which antigens are present in the test, the vaccine and the field virus. Differences between these antigens affect the relationship between antibody titre and protection

    Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary

    Get PDF
    An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences

    Space Shuttle 2 advanced space transportation system, volume 2

    Get PDF
    To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference

    Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    Get PDF
    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient (λ), friction factor (f) and secondary flow coefficient (k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth (β) and width ratio (α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region

    Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    Get PDF
    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient (λ), friction factor (f) and secondary flow coefficient (k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth (β) and width ratio (α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region

    Depth-averaged simulation of flows in asymmetric compound channels with smooth and rough narrow floodplains

    Get PDF
    Depth-averaged hydrodynamic models are predominantly used in numerical simulations of compound channel flows. One of the most popular methods for the depth-averaged simulation is Shiono and Knight method (SKM). This method accounts for the effects of bed friction, lateral turbulence and secondary flows, via three key parameters f, λ and Γ, respectively. The conventional expressions that are developed to calibrate these parameters are generally based on experiments in compound channels with wide floodplains. In this study, the application of SKM to an asymmetric compound channel with a narrow floodplain is examined in terms of the calibration requirements. Two sets of experiments that have smooth and rough floodplains are conducted and then simulated by SKM. In smooth floodplain cases, the results reveal that SKM model with the conventional calibration expressions of f, λ and Г is reasonably capable of predicting the distributions of depth-averaged velocity and boundary shear stress in the main channel. However, in the floodplain region, the expressions recommended for calibrating Г need to be modified to improve the predicted results in that region. In cases of the rough floodplain, the results indicate that only the values of λ in the main channel need to be changed from its conventional values to improve the predictions

    PHP57 INAPPROPRIATE SEDATION IN ICUS: EVIDENCE FROM THE LITERATURE

    Get PDF
    corecore