11,396 research outputs found

    Development and Validation of NDE Standards for NASAs Advanced Composites Project

    Get PDF
    The adoption of composite materials in aircraft manufacturing for use in structural applications continues to increase but is still relatively new to the industry. Composite components have large development and certification costs in comparison to metallic structures. Traditional methods of nondestructive evaluation (NDE) used for isotropic materials such as metals may not be adequate for composite applications and therefore is a contributing factor to the cost and complexity of developing new structural composites. Additionally, the defects of interest in composite materials are significantly different from metals. Thus, good quality composite reference standards are essential to obtaining reliable and quantifiable NDE results. Ideally, reference standards contain flaws or damage whose NDE indications most closely represent those created by actual flaws/damage. They should also be easy to duplicate and inexpensive to manufacture. NASAs Advanced Composites Project, working with industry partners, developed a set of composite standards that contain a range of validated defects representing those typically found in aerospace composite materials. This paper will provide an overview of the standards fabricated, the manufacturing plans used to fabricate them, the types of defects included, and validation testing that has performed. Also discussed is an inter-laboratory round-robin test that is being performed on these standards. The paper will describe a guidance document being compiled to outline relevant inspection procedures for challenging and critical defects unique to composites where conventional techniques may not be appropriate

    Telerobotic workstation design aid

    Get PDF
    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design

    Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices?

    Full text link
    Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum degenerate regime the temperature is a key parameter. In this work, we investigate the intrinsic heating and cooling effects due to an entropy-preserving raising of the optical lattice potential. We analyze this process, identify the generic behavior valid for a wide range of parameters, and discuss it quantitatively for the recent experiments with 87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov-approximation, including the fermions in a self-consistent mean field interaction. In the presence of the full three-dimensional lattice, we use a strong coupling expansion. As a result of the presence of the fermions, the temperature of the mixture after the lattice ramp-up is always higher than for the pure bosonic case. This sheds light onto a key point in the analysis of recent experiments.Comment: 5 pages, 3 figure

    In Situ Thermal Inspection of Automated Fiber Placement Operations for Tow and Ply Defect Detection

    Get PDF
    The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems pose is the uniformity of the deposited prepreg tape layers, which complicates detection of laps, gaps, overlaps and twists. The current detection method used in industry involves halting fabrication and performing a time consuming, visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The innovation proposed in this paper is to use the preheated base layer as a through-transmission heat source for inspecting the newly added tape layer in situ using a thermographic camera mounted on to the AFP hardware. Such a system would not only increase manufacturing throughput by reducing inspection times, but it would also aid in process development for new structural designs or material systems by providing data on as-built parts. To this end, a small thermal camera was mounted onto an AFP robotic research platform at NASA, and thermal data was collected during typical and experimental layup operations. The data was post processed to reveal defects such as tow overlap/gap, wrinkling, and peel-up. Defects that would have been impossible to detect visually were also discovered in the data, such as poor/loss of adhesion between plies and the effects of vacuum debulking. This paper will cover the results of our experiments, and the plans for future versions of this inspection system

    Handbook for estimating toxic fuel hazards

    Get PDF
    Computer program predicts, from readily available meteorological data, concentration and dosage fields downwind from ground-level and elevated sources of toxic fuel emissions. Mathematical model is applicable to hot plume rise from industrial stacks and should also be of interest to air pollution meteorologists

    Parametric instabilities in magnetized multicomponent plasmas

    Full text link
    This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The excitation is provided by parametrically pumping the magnetic field. Here two ion-like species are allowed to be fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary. Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves. We firstly investigate the pump wave in detail, in the case where the background magnetic field is perpendicular to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14 pages, 8 figure

    Current and Future Needs and Research for Composite Materials NDE

    Get PDF
    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. The ability to characterize damage in carbon fiber reinforced polymer composite components is required to facilitate damage progression models capable of yielding accurate remaining life predictions. As these composite structures become larger and more complex, nondestructive evaluation (NDE) techniques capable of quantifying and fully characterizing the material state are needed to enable damage progression models capable of yielding accurate remaining life predictions. This paper will present an overview of current NDE research activities for quantitative characterization of aerospace composites as well as a discussion of future directions in NDE research

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    Actin at cell-cell junctions is composed of two dynamic and functional populations

    Get PDF
    The ability of epithelial cells to polarize requires cell-cell adhesion mediated by cadherin receptors. During cell-cell contact, the mechanism via which a flat, spread cell shape is changed into a tall, cuboidal epithelial morphology is not known. We found that cadherin-dependent adhesion modulates actin dynamics by triggering changes in actin organization both locally at junctions and within the rest of the cell. Upon induction of cell-cell contacts, two spatial actin populations are distinguishable: junctional actin and peripheral thin bundles. With time, the relative position of these two populations changes and becomes indistinguishable to form a cortical actin ring that is characteristic of mature, fully polarized epithelial cells. Junctional actin and thin actin bundles differ in their actin dynamics and mechanism of formation, and interestingly, have distinct roles during epithelial polarization. Whereas junctional actin stabilizes clustered cadherin receptors at cell-cell contacts, contraction of peripheral actin bundle is essential for an increase in the maximum height at the lateral domain during polarization (cuboidal morphology). Thus, both junctional actin and thin bundles are necessary, and cooperate with each other to generate a polarized epithelial morphology
    corecore