789 research outputs found

    Stellar Oscillations Network Group

    Full text link
    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V<6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.Comment: Proc. Vienna Workshop on the Future of Asteroseismology, 20 - 22 September 2006. Comm. in Asteroseismology, Vol. 150, in the pres

    Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

    Get PDF
    Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure

    Global effects of local sound-speed perturbations in the Sun: A theoretical study

    Full text link
    We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology on numerical simulations of the solar acoustic wave field. Extending the method of realization noise subtraction (e.g. Hanasoge et al. 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are used to study sensitivities and the signatures of the thermal asphericities. We find that (1) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone as in comparison to anomalies well in the radiative interior (râ‰Č0.55R⊙r\lesssim0.55 R_\odot), (2) the mm-degeneracy is lifted ever so slightly, as seen in the aa coefficients, and (3) modes that propagate in the vicinity of the perturbations show small amplitude shifts (∌0.5\sim 0.5%).Comment: Submitted to Solar Physic

    Butterfly diagram of a Sun-like star observed using asteroseismology

    Full text link
    Stellar magnetic fields are poorly understood but are known to be important for stellar evolution and exoplanet habitability. They drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution. Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measure the variation of their latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To that effect, we use Kepler data, to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation of the stellar rotation rates. We observe a clear variation of the latitude of the starspots. It is the first time such a diagram is constructed using asteroseismic data.Comment: 8 pages, 4 figures, accepted in A&A Letter

    Invest to Save: Report and Recommendations of the NSF-DELOS Working Group on Digital Archiving and Preservation

    Get PDF
    Digital archiving and preservation are important areas for research and development, but there is no agreed upon set of priorities or coherent plan for research in this area. Research projects in this area tend to be small and driven by particular institutional problems or concerns. As a consequence, proposed solutions from experimental projects and prototypes tend not to scale to millions of digital objects, nor do the results from disparate projects readily build on each other. It is also unclear whether it is worthwhile to seek general solutions or whether different strategies are needed for different types of digital objects and collections. The lack of coordination in both research and development means that there are some areas where researchers are reinventing the wheel while other areas are neglected. Digital archiving and preservation is an area that will benefit from an exercise in analysis, priority setting, and planning for future research. The WG aims to survey current research activities, identify gaps, and develop a white paper proposing future research directions in the area of digital preservation. Some of the potential areas for research include repository architectures and inter-operability among digital archives; automated tools for capture, ingest, and normalization of digital objects; and harmonization of preservation formats and metadata. There can also be opportunities for development of commercial products in the areas of mass storage systems, repositories and repository management systems, and data management software and tools.

    Stochastic excitation of nonradial modes II. Are solar asymptotic gravity modes detectable?

    Full text link
    Detection of solar gravity modes remains a major challenge to our understanding of the innerparts of the Sun. Their frequencies would enable the derivation of constraints on the core physical properties while their amplitudes can put severe constraints on the properties of the inner convective region. Our purpose is to determine accurate theoretical amplitudes of solar g modes and estimate the SOHO observation duration for an unambiguous detection. We investigate the stochastic excitation of modes by turbulent convection as well as their damping. Input from a 3D global simulation of the solar convective zone is used for the kinetic turbulent energy spectrum. Damping is computed using a parametric description of the nonlocal time-dependent convection-pulsation interaction. We then provide a theoretical estimation of the intrinsic, as well as apparent, surface velocity. Asymptotic g-mode velocity amplitudes are found to be orders of magnitude higher than previous works. Using a 3D numerical simulation, from the ASH code, we attribute this to the temporal-correlation between the modes and the turbulent eddies which is found to follow a Lorentzian law rather than a Gaussian one as previously used. We also find that damping rates of asymptotic gravity modes are dominated by radiative losses, with a typical life-time of 3×1053 \times 10^5 years for the ℓ=1\ell=1 mode at Îœ=60ÎŒ\nu=60 \muHz. The maximum velocity in the considered frequency range (10-100 ÎŒ\muHz) is obtained for the ℓ=1\ell=1 mode at Îœ=60ÎŒ\nu=60 \muHz and for the ℓ=2\ell=2 at Îœ=100ÎŒ\nu=100 \muHz. Due to uncertainties in the modeling, amplitudes at maximum i.e. for ℓ=1\ell=1 at 60 ÎŒ\muHz can range from 3 to 6 mm s−1^{-1}.Comment: 18 pages, 19 figures, accepted for publication in Astronomy & Astrophysic

    Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars

    Full text link
    The differentially rotating outer layers of stars are thought to play a role in driving their magnetic activity, but the underlying mechanisms that generate and sustain differential rotation are poorly understood. We report the measurement of latitudinal differential rotation in the convection zones of 40 Sun-like stars using asteroseismology. For the most significant detections, the stars' equators rotate approximately twice as fast as their mid-latitudes. The latitudinal shear inferred from asteroseismology is much larger than predictions from numerical simulations.Comment: 45 pages, 11 figures, 4 tables, published in Scienc

    Accurate Determination of the Solar Photospheric Radius

    Get PDF
    The Solar Diameter Monitor measured the duration of solar meridian transits during the 6 years 1981 to 1987, spanning the declining half of solar cycle 21. We have combined these photoelectric measurements with models of the solar limb-darkening function, deriving a mean value for the solar near-equatorial radius of 695.508 +- .026 Mm. Annual averages of the radius are identical within the measurement error of +- .037 Mm.Comment: 6 pages, 2 figures Submitted to Astrophys. J. Lett., March 9 1998 Uses AASTeX Macro package aas2pp

    Properties of oscillation modes in subgiant stars observed by Kepler

    Full text link
    Mixed modes seen in evolved stars carry information on their deeper layers that can place stringent constraints on their physics and on their global properties (mass, age, etc...). In this study, we present a method to identify and measure all oscillatory mode characteristics (frequency, height, width). Analyzing four subgiants stars, we present the first measure of the effect of the degree of mixture on the l=1 mixed modes characteristics. We also show that some stars have measurable l=2 mixed modes and discuss the interest of their measure to constrain the deeper layers of stars.Comment: Accepted to Ap

    Third Order Effect of Rotation on Stellar Oscillations of a ÎČ\beta-Cephei Star

    Full text link
    Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (1998) and revised by Karami (2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating ÎČ\beta-Cephei star with 12 M⊙M_\odot. For an equatorial velocity of 90 kms−1\rm km s^{-1}, it is found that the second- and third-order corrections for (l,m)=(5,−4)(l,m)=(5,-4), for instance, are of order of 0.07% of the frequency for radial order n=−3n=-3 and reaches up to 0.6% for n=−20n=-20.Comment: 13 pages, 2 figures, 10 table
    • 

    corecore