3,391 research outputs found
Efficiency of different matrix inversion methods applied to Wilson fermions
We compare different conjugate gradient -- like matrix inversion methods (CG,
BiCGstab1 and BiCGstab2) employing for this purpose the compact lattice quantum
electrodynamics (QED) with Wilson fermions. The main goals of this
investigation are the CPU time efficiency of the methods as well as the
influence of machine precision on the reliability of (physical) results
especially close to the 'critical' line ~\kappa_c(\bt).Comment: 27 pages LaTeX (epsf), all figures include
Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer
A suspension-point interferometer (SPI) is an auxiliary interferometer for
active vibration isolation, implemented at the suspension points of the mirrors
of an interferometric gravitational wave detector. We constructed a prototype
Fabry-Perot interferometer equipped with an SPI and observed vibration
isolation in both the spectrum and transfer function. The noise spectrum of the
main interferometer was reduced by 40 dB below 1 Hz. Transfer function
measurements showed that the SPI also produced good vibration suppression above
1 Hz. These results indicate that SPI can improve both the sensitivity and the
stability of the interferometer.Comment: 14 pages, 8 figures; added discussion; to be published in Physics
Letters
Lattice energy-momentum tensor with Symanzik improved actions
We define the energy-momentum tensor on lattice for the and
for the nonlinear -model Symanzik tree-improved actions, using Ward
identities or an explicit matching procedure. The resulting operators give the
correct one loop scale anomaly, and in the case of the sigma model they can
have applications in Monte Carlo simulations.Comment: Self extracting archive fil
Decay and Right-handed Top-bottom Charged Current
We introduce an anomalous top quark coupling (right-handed current) into
Standard Model Lagrangian. Based on this, a more complete calculation of decay including leading log QCD corrections from to
in addition to corrections from to is given. The inclusive decay
rate is found to be suppressed comparing with the case without QCD running from
to except at the time of small values of . e.g. when
, it is only of the value given before. As
goes smaller, this contribution is an enhancement like standard model case.
From the newly experiment of CLEO Collaboration, strict restrictions to
parameters of this top-bottom quark coupling are found.Comment: 20 Pages, 2 figures( ps file uuencoded)
Exact Calculation of , \
We present an exact calculation of the Wilson coefficients
associated with the dipole moment operators. We also give an estimate of the
branching ratio for . We find that higher dimensional
effects are under control within for .Comment: 12 pages (plain TeX), 2 postscript figures available upon request.
UM-TH-93-20 , IP-ASTP-29-9
The transition in softly broken supersymmetry
We study the effect of supersymmetric contributions to the effective quark
transition , including leading order QCD effects. We apply
the discussion to the decay . Even though one-particle
irreducible contributions could play a role, numerical cancelations make the
amplitude for the two-photon emission strongly correlated to the
amplitude which is sharply constrained by experiment. A quite general statement
follows: as long as non-standard physics effects appear only in the matching of
the Wilson coefficients of the standard effective operator basis, the
deviations from the standard model expectations of the decay rates induced by
are bound to follow closely the corresponding deviations
on . Effects of new physics are therefore bound to be small.Comment: Latex2e, RevTex, 22 pages, 8 eps figures, comments and references
adde
Predicting EuroQol (EQ-5D) scores from the patient-reported outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample
Preference-based health index scores provide a single summary score assessing overall health-related quality of life and are useful as an outcome measure in clinical studies, for estimating quality-adjusted life years for economic evaluations, and for monitoring the health of populations. We predicted EuroQoL (EQ-5D) index scores from patient-reported outcomes measurement information system (PROMIS) global items and domain item banks.
This was a secondary analysis of health outcome data collected in an internet survey as part of the PROMIS Wave 1 field testing. For this study, we included the 10 global items and the physical function, fatigue, pain impact, anxiety, and depression item banks. Linear regression analyses were used to predict EQ-5D index scores based on the global items and selected domain banks.
The regression models using eight of the PROMIS global items (quality of life, physical activities, mental health, emotional problems, social activities, pain, and fatigue and either general health or physical health items) explained 65% of the variance in the EQ-5D. When the PROMIS domain scores were included in a regression model, 57% of the variance was explained in EQ-5D scores. Comparisons of predicted to actual EQ-5D scores by age and gender groups showed that they were similar.
EQ-5D preference scores can be predicted accurately from either the PROMIS global items or selected domain banks. Application of the derived regression model allows the estimation of health preference scores from the PROMIS health measures for use in economic evaluations
The Coulomb law in the pure gauge U(1) theory on a lattice
We study the heavy charge potential in the Coulomb phase of pure gauge
compact U(1) theory on the lattice. We calculate the static potential
from Wilson loops on a lattice and compare
with the predictions of lattice perturbation theory. We investigate finite size
effects and, in particular, the importance of non-Coulomb contributions to the
potential. We also comment on the existence of a maximal coupling in the
Coulomb phase of pure gauge U(1) theory.Comment: 14 pages. LaTeX file and 3 postscript figure
- âŠ