5,045 research outputs found

    Full-field pulsed magneto-photoelasticity – Experimental Implementation

    No full text
    This paper contains a description of the experimental procedure employed when using a pulsed-magneto-polariscope (PMP) and some initial full-field through-thickness measurements of the stress distribution present in samples containing 3D stresses. The instrument uses the theory of magneto-photoelasticity (MPE), which is an experimental stress analysis technique that involves the application of a magnetic field to a birefringent model within a polariscope. MPE was developed for through-thickness stress measurement where the integrated through-thickness birefringent measurement disguises the actual stress distribution. MPE is mainly used in toughened glass where the through-thickness distribution can reduce its overall strength and so its determination is important. To date MPE has been a single-point 2D through-thickness measurement and the analysis time is prohibitive for the investigation of an area which may contain high localised stresses. The pulsed-magneto-polariscope (PMP) has been designed to enable the application of full-field 3D MPE [ ]. Using a proof-of concept PMP several experimental measurements were made, these were promising and demonstrate the potential of the new instrument. Further development of this technique presents several exciting possibilities including a tool for the measurement of the distribution of principal stress difference seen in a general 3D model

    Increasing vertical mixing to reduce Southern Ocean deep convection in NEMO3.4

    Get PDF
    Most CMIP5 (Coupled Model Intercomparison Project Phase 5) models unrealistically form Antarctic Bottom Water by open ocean deep convection in the Weddell and Ross seas. To identify the mechanisms triggering Southern Ocean deep convection in models, we perform sensitivity experiments on the ocean model NEMO3.4 forced by prescribed atmospheric fluxes. We vary the vertical velocity scale of the Langmuir turbulence, the fraction of turbulent kinetic energy transferred below the mixed layer, and the background diffusivity and run short simulations from 1980. All experiments exhibit deep convection in the Riiser-Larsen Sea in 1987; the origin is a positive sea ice anomaly in 1985, causing a shallow anomaly in mixed layer depth, hence anomalously warm surface waters and subsequent polynya opening. Modifying the vertical mixing impacts both the climatological state and the associated surface anomalies. The experiments with enhanced mixing exhibit colder surface waters and reduced deep convection. The experiments with decreased mixing give warmer surface waters, open larger polynyas causing more saline surface waters and have deep convection across the Weddell Sea until the simulations end. Extended experiments reveal an increase in the Drake Passage transport of 4 Sv each year deep convection occurs, leading to an unrealistically large transport at the end of the simulation. North Atlantic deep convection is not significantly affected by the changes in mixing parameters. As new climate model overflow parameterisations are developed to form Antarctic Bottom Water more realistically, we argue that models would benefit from stopping Southern Ocean deep convection, for example by increasing their vertical mixing

    Multiplicative perturbation of nonlinear m-accretive operators

    Get PDF
    AbstractCriteria are obtained for when an accretive product (i.e., composition) BA of nonlinear m-accretive operators A and B in a Banach space X will be itself m-accretive; and, in particular, when a monotone product of two maximal monotone operators in a Hilbert space will be maximal monotone. This extends the theory of multiplicative perturbation of infinitesimal generators of contraction semigroups to the nonlinear case. Also obtained as a biproduct are existence theorems for certain Hammerstein integral equations

    Influence of Topping and Harvest Management on the Evaluation of Data From Burley Tobacco Variety Trials

    Get PDF
    Tobacco producers are always interested in new tobacco varieties, and are continually searching for the best variety. Producers receive information about varieties from a number of sources including; research and extension publications, county extension agents, neighbors, farm supply workers, and seed producers. To help producers evaluate varieties, county agents in cooperation with tobacco specialists conduct many burley tobacco variety trials at the county level

    Toward Renewable Eenergy Geo-information Infrastructures: Applications of GIScience and Remote Sensing that Build Institutional Capacity

    Get PDF
    Sustained policy support is necessary in order to drive a transition toward renewable energy (RE). The ability to realize RE policy objectives is constrained by a range of geographic factors related to resource potential, the distribution of resources, land availability/suitability, the absorptive capacity of proximal infrastructure, and local socio-political acceptance. With this in mind, this paper provides a systematic review of how geographic information science and remote sensing techniques have been applied to reduce uncertainties surrounding renewable energy development, with emphasis on policy and planning needs. The concept of a ‘geo-information infrastructure’ is used to bring coherence and direction to this growing body of literature. The review highlights four underdeveloped research areas, including: Resolving issues of scalar discordance through comprehensive analysis at local and regional scales; mapping interactions in space of multiple supply options to deliver more accurate and sophisticated estimates of RE potential in an area and to identify competitive and symbiotic land-use situations; using energy resource maps as primary inputs into the development of technology road-maps; and developing geographically explicit indicators which can signal priority areas for RE recovery based on social and environmental returns on investments. In each case, suggestions moving forward are provided. The paper identifies knowledge-based institutional networking as a pathway through which local and regional public authorities can be equipped with the resources necessary to build and mobilize a geo-information infrastructure

    Plate boundary trench retreat and dextral shear drive intracontinental fault-slip histories: Neogene dextral faulting across the Gabbs Valley and Gillis Ranges, Central Walker Lane, Nevada

    Get PDF
    The spatial-temporal evolution of intracontinental faults and the forces that drive their style, orientation, and timing are central to understanding tectonic processes. Intracontinental NW-striking dextral faults in the Gabbs Valley–Gillis Ranges (hereafter referred to as the GVGR), Nevada, define a structural domain known as the eastern Central Walker Lane located east of the western margin of the North American plate. To consider how changes in boundary type along the western margin of the North American plate influenced both the initiation and continued dextral fault slip to the present day in the GVGR, we combine our new detailed geologic mapping, structural studies, and 40Ar/39Ar geochronology with published geologic maps to calculate early to middle Miocene dextral fault-slip rates. In the GVGR, Mesozoic basement is nonconformably overlain by a late Oligocene to Miocene sequence dominated by tuffs, lavas, and sedimentary rocks. These rocks are cut and offset by four primary NW-striking dextral faults, from east to west the Petrified Spring, Benton Spring, Gumdrop Hills, and Agai Pah Hills–Indian Head faults. A range of geologic markers, including tuff- and lava-filled paleovalleys, the southern extent of lava flows, and a normal fault, show average dextral offset magnitudes of 9.6 ± 1.1 km, 7.0 ± 1.7 km, 9.7 ± 1.0 km, and 4.9 ± 1.1 km across the four faults, respectively. Cumulative dextral offset across the GVGR is 31.2 ± 2.3 km. Initiation of slip along the Petrified Spring fault is tightly bracketed between 15.99 ± 0.05 Ma and 15.71 ± 0.03 Ma, whereas slip along the other faults initiated after 24.30 ± 0.05 Ma to 20.14 ± 0.26 Ma. Assuming that slip along all four faults initiated at the same time as the Petrified Spring fault yields calculated dextral fault-slip rates of 0.4 ± 0.1–0.6 ± 0.1 mm/yr, 0.4 ± 0.1–0.5 ± 0.1 mm/yr, 0.6 ± 0.1 mm/yr, and 0.3 ± 0.1 mm/yr on the four faults, respectively. Middle Miocene initiation of dextral fault slip across the GVGR overlaps with the onset of normal slip along range-bounding faults in the western Basin and Range to the north and the northern Eastern California shear zone to the south. Based on this spatial-temporal relationship, we propose that dextral fault slip across the GVGR defines a kinematic link or accommodation zone between the two regions of extension. At the time of initiation of dextral slip across the GVGR, the plate-boundary setting to the west was characterized by subduction of the Farallon plate beneath the North American plate. To account for the middle Miocene onset of extension across the Basin and Range and dextral slip in the GVGR, we hypothesize that middle Miocene trench retreat drove westward motion of the Sierra Nevada and behind it, crustal extension across the Basin and Range and NW-dextral shear within the GVGR. During the Pliocene, the plate boundary to the west changed to NW-dextral shear between the Pacific and North American plates, which drove continued dextral slip along the same faults within the GVGR because they were fortuitously aligned subparallel to plate boundary motion

    Design and Implementation of a Python-Based Active Network Platform for Network Management and Control

    Get PDF
    Active networks can provide lightweight solutions for network management-related tasks. Specific requirements for these tasks have to be met, while at the same time several issues crucial for active networks can be solved rather easily. A system addressing especially network management was developed and implemented. It provides a flexible environment for rapid development using the platform-independent programming language Python, and also supports platform dependent native code. By allowing to add new functions to network devices it improves the performance of Internet routers, and simplifies the introduction and maintenance of new services

    Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro

    Get PDF
    The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage. On the basis of these data, PARP inhibitors may be potentially useful in combination with topoisomerase I inhibitor anticancer chemotherapy. © 2001 Cancer Research Campaign http://www.bjcancer.co
    • …
    corecore