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Criteria are obtained for when an accretive product (i.e., composition) BA 
of nonlinear m-accretive operators A and B in a Banach space X will be itself 
m-accretive; and, in particular, when a monotone product of two maximal 
monotone operators in a Hilbert space will be maximal monotone. This extends 
the theory of multiplicative perturbation of infinitesimal generators of contrac- 
tion semigroups to the nonlinear case. Also obtained as a biproduct are existence 
theorems for certain Hammerstein integral equations. 

1. INTR~DOCTI~N 

In this paper we obtain criteria for when an accretive product (i.e., 
composition) BA of nonlinear m-accretive operators A and B in a 
Banach space X will be itself m-accretive; and, in particular, when a 
monotone product of two maximal monotone operators in a Hilbert 
space will be maximal monotone. The class of m-accretive operators 
arises in initial value problems as infinitesimal generators of contrac- 
tion semigroups which describe the time-evolution of a system; for 
applications a perturbation theory has developed. For linear A and B, 
additive perturbation (i.e., given A m-accretive, for what B is A + B 
m-accretive) has been studied for example in [13, 16, 18, 20, 24, 30, 
31, 341; linear multiplicative perturbation (i.e., given A m-accretive, 
for what B is BA m-accretive) has been studied, for example, in 
[lo, 12, 14, 15, 18, 19, 361. M ore recently, for nonlinear A and B, 
additive perturbation results have been obtained in [l-4,9,23,28,33]; 
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it is the purpose of this paper to extend the multiplicative perturbation 
theory to the nonlinear case. 

Let X be a Banach space (over the reals, for simplicity), with strong 
dual X*. We recall an operator (single or multivalued, with single or 
multivalued inverse) A : D(A) C X --+ 2x (to denote that A is a subset 
of X x X (see, e.g., [2,4, 81 for the standard notation) with D(A) 
and R(A) subsets of X) is said to be accretive if, for all 01 > 0, 
(I + aA)-l is single-valued and nonexpansive; if, in addition, 
R(l + A) = X, A is said to be m-accretive. Thus accretive and 
m-accretive are the same as monotonic and m-monotonic in Kato [21] 
and g-accretive and hypermaximal accretive in Browder [4]. Let 
J:X+2X*beth ( y h e ever w  ere defined, single-valued iff X is smooth 
iff X* is strictly convex) maximal duality map, namely, 

J(x) = 1x* I II x* II2 = II x II2 = cx*, 4. 

By [21] A is accretive iff for each U, v in D(A) and for each x E Au, 
y E Av there is an x* in J(u - v) such that (x*, x - y) > 0; we 
specify this in particular by saying A is accretive (y), where F is the 
function ~(u, v, x E Au, y E Av) = x*. Similarly, we say that A is 
accretive (J) if for x E Au, y E Av, (x*, x - y) >, 0 for all x* in 
.T(u - VI* 

We recall B : D(B) C X -+ 2x* is monotone if u in Bx and v in By 
implies (u - v, x - y) > 0, B is maximal monotone if B (as a graph) 
is not properly contained in a larger monotone graph, and B is 
coercive if for u in Bx one has (u, x) * 11 x 11-l -P co as ]I x ]I --+ co. If X 
is a Hilbert space, monotone is the same as accretive, and by Minty [29] 
maximal monotone is the same as m-accretive. We also recall 
B : X -+ X (to denote that B is everywhere defined and single valued) 
is hemicontinuous if B is weakly continuous from line segments; also, 
that an operator T : D(T) C X -+ 2y is said to be locally bounded if 
Vx E X there exists a neighborhood U such that T( U n D(T)) is 
bounded. 

The proofs of the following four results will be given in Section 2. 

THEOREM 1. Let X be any Banach space, A : D(A) C X -+ X, A 
m-accretive (v), B : X -+ X such that EB - I has (uniform) Lipschitz 
constant k < 1 for some E > 0. Then if BA is accretive ($) such that 
#(u, v, BAu, BAv) = ~(u, v, Au, Av), it is m-accretive (+). 

THEOREM 2. Let X be reflexive, A : D(A) C X -+ 2x*, B : D(B) C 
X* -+ 2x, both A and B maximal monotone, both of the following condi- 
tions holding : 
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(1) either B-l or A is locally bounded; 

(2) either B or A-l is locally bounded. 

Then if BA is accretive, it is m-accretive. 

THEOREM 3. Let X be any Banach space, A : D(A) C X + 2x, 
A m-accretive (J), B : X -+ X of the form B = (C + 81)-l for some 
6 > 0 and some C : X -+ X, C uniformly Lipschitz and accretive. Then 
zf BA is accretive, it is m-accretive. If X* is uniformly convex, C need 
be only hemicontinuous and accretive. 

THEOREM 4. Let X* be un;formZy convex, A : D(A) C X + 2x, 
A m-accretive, B : X + X, B hemicontinuous, accretive, weakly closed, 
B and B-l bounded, andfor all 01> 0, Bc+(I - (I + orA)-l is accretive. 
Then if BA is accretive, it is m-accretive. 

Briefly, additive perturbation results are utilized for the proofs of 
Theorems 1,2, and 3, semigroup methods for the proof of Theorem 4. 

2. PROOFS 

The following additive perturbation result, to be used here in the 
proofs of Theorems 1 and 3, extends Crandall and Pazy [9, Theo- 
rem 4.21 and is similar to results of Kato [23] and Mermin [28]; here 

I S I = inf{ll s II, s E S}, for a nonempty set S. 

LEMMA 1. Let A be m-accretive (v) in a Banach space X, B single 
valued, D(B) r) D(A), such that A + B is accretive (9) such that 
#(u, v, x + Bu, y + Bv) = ~(u, v, x E Au, y E Av). Suppose there exist 
constants a and b, b < 1, such that for xl , x2 in D(A), 

II Bx, - Bx, II G a II x1 - xz II + b IAx, - 4 I. (2.1) 

Then A + B is m-accretive (q4). 

Proof. Writing A + tB C t(A + B) + (1 - t) A one has by 
direct verification that for 0 < t < 1, A + tB is accretive. By use of 
the doubling lemma [16] it is sufficient to show A + B m-accretive 
for b < 8; i.e., in accordance with [16] this amounts to observing the 
two inequalities 

II 5% - 3% II < ta II x1 - xa II + $b I Ax, - Ax, I, (2.2) 
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and, for b < 314, 

II w, - wx, II G $0 II xl - x2 II + 3 I(A + wh - (A + m, I. (2.3) 

Considering then the case b < Q, let h > 0 be chosen (large) so 
that ah-l + 2b < 1; one then has 

II w  + VYl - w  + 4-‘rs II 

< (a + 4 II@ + 4-l~, - (A + Vrs II + b II ~1 - yz II 

< (ah-l + 2Q II Yl - Yz IL (2.4) 

Thus for each fixed y in X the map C, E y - B(A + A)-l, being a 
strict contraction, has a fixed point xY = C,x, ; hence 

R(I + B(A + q-1) = x, 

and consequently R(h + A + B) = X. 

Proof of Theorem 1. Write EBA = A + (EB - I) A; then 

/I(& - I) Ax, - (EB - I) Ax, I/ < h 11 Ax, - Ax, II, 

so that EBA (and hence BA) is m-accretive (#) by Lemma 1. 
We note that it is sufficient that D(B) 3 R(A) in Theorem 1; further 

multiplicative perturbation results similar to Theorem 1 for not 
everywhere defined nonlinear B could be obtained along the lines of 

l?91* 

COROLLARY 1. Let X be a Banach space, A m-accretive and B as 
in Theorem 1 (or Lemma l), BA (or A + B) accretive. Then BA (or 
A + B) is m-accretive under any of the following conditions: 

(i) A is m-accretive (J); 

(ii) A is linear; 

(iii) X is smooth. 

Proof. In each case, A is m-accretive (g)) for all q. The linear cases 
(ii) were obtained previously in [13] and [14]. 

Proof of Theorem 2. First we recall the following result due to 
Rockafellar [32]: 

I f  X is reflexive and T : D(T) C X -+ 2x* is maximal monotone, 

then R(T) = X* if and only if T-l is locally bounded. 
(*) 
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Since an operator is maximal monotone iff its inverse is maximal 
monotone, A-l and B are both maximal monotone; therefore by (*) 
condition (2) is equivalent to: either D(B) = X* or D(A-l) = X*. 
Consequently, by Rockafellar [33] (for an alternate proof, see [2]), 
A-l + B is maximal monotone; if (A-l + B)-l is shown to be locally 
bounded, then by (*) one has R(A-l + B) = X, and therefore 
R(I + BA) = X. 

Consider any x, + a, = yn -+ y, x, E A-‘fn , z, E Bf, ; then 
yn E (I + BA) x, . Since (I + BA)-l is nonexpansive, {xJ is a 
Cauchy sequence with a limit point x, and x, + y - x. Considering 
now condition (l), suppose B-l is locally bounded, let U be a neigh- 
borhood of y - x with B-l(U) b ounded; then f, E B-l(U) for large n 
and hence {fn} is bounded. Suppose instead that A is locally bounded, 
let U be a neighborhood of x with A(U) bounded; then f, E A(U) 
for large n and hence {fn} . b IS ounded. Consequently (A-l + B)-l is 
locally bounded. 

Remark 1. For linear A and B results similar to Theorem 2 were 
obtained for example in [18, Theorem 3.31, [19, Corollary 3.8, 
Theorem 3.91; further nonlinear right multiplication results per st 
and simultaneous nonlinear right and left multiplication results could 
be obtained along those lines. The result (*) of [32] used above is 
analogous to the fact (e.g., [19, Lemma 4.21) that for linear m-accretive 
A in a Banach space, R(A) = X iff A-l is bounded. 

Remark 2. Condition (2) can clearly be weakened (and still 
satisfy the domain condition of [33], so that Theorem 2 remains 
valid) to: 

(2’) (int D(B)} r\ R(A) nonempty, or {int R(A)) IT D(B) non- 
empty. 

The following partially linear version of Theorem 2 also holds; 
replace (1) and (2) by 

(1”) Vy E X, (y - R(B)] n (int D(A)) is nonempty, or Vy E X, 
{y - D(A)} n {int R(B)) is nonempty, and 

(2”) either B is linear and bounded, or A is linear and A-l is 
bounded. 
To verify this, for any y in X let C,(x) = -B-l(y - x), D(C,) = 
{y - R(B)}; since A and C, are maximal monotone, A + C, is 
maximal monotone by [33] and (1”). By (*) it suffices to show that 
(A + Q-V) b is ounded for N any bounded set. Let 

z E {(A + C,)x> n N; 
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then B-Q - x) A {Ax - z> is nonempty, so y E {LY + B(ax - z)}. 
If B is linear, (I + BA) x contains y + Bz, and hence 

which is bounded since (I+ BA)-l, B, and N are bounded. If A is 
linear with bounded inverse, by (*) A is onto, z = Aw for some w, 
y - w  E (I+ BA)(x - w), and consequently 

x E (I + BA)-’ (y - A-l(N)) + A-l(N), 

which is bounded. 

Remark 3. We observe in this context that Browder, de Figuei- 
redo, Gupta [5, Theorem I] state1 that R[I + BA] = X under the 
same conditions (X reflexive, A and B maximal monotone) as in 
Theorem 2 above, with the additional assumption that A is single- 
valued, everywhere defined, (so that, by (*), A is locally bounded, 
so that (1) is satisfied), coercive (so that A-l is locally bounded, i.e., 
(2) is satisfied), hemicontinuous, and monotone (so that A is maximal 
monotone) but without BA assumed to be accretive. Thus Theorem 2, 
and indirectly, the other results of this paper, provide existence 
theorems for Hamerstein integral equations as in [5]. In particular, 
to avoid the assumption of BA accretive, let us replace in Theorem 2 
the conditions (l), (2), and BA accretive by 

(1”‘) B-l locally bounded and 
(2”‘) A coercive; 

then R[I + BA] = X, as follows. As in Remark 2 above, 
A + C, is maximal monotone (because D(C,) = X), and by (*), 
R(A + C,) = X* if A + C, is coercive, which is the case by 
II x II-W + C,) x, x> 2 II x II-“(A x, x) - 11 B-l(y)jj. Consequently 
there exists an x such that 0 E (A + C,) x, so that y E (I + BA) x. 
This (“‘) result thus complements that of [5], since there it was 
assumed that D(A) = X, whereas here we assumed that R(B) = X; 
and in the case that BA is accretive, Theorem 2 contains and gener- 
alizes the result of [5]. 

1 The proof of [5, Theorem 11 contains a small discrepancy; e.g., a correct version 
of [5, Theorem l] is: A and B maximal monotone, D(A) = X, A,(x) = A(x - x0) 
coercive for all .x0 . The verification proceeds as in [S], modified as follows: select 
x1 E R(B), let x0 = x1 - y, let C&-I!) = -IW(xI - x), let A,(x) = A(x - x0), 
observe that 0 E D(A, + C,), A, + C, is maximal monotone by [33] and A, + C, is 
coercive by ((A, + C,)(x), x) > (A(x - x0) - B-‘(xl), x); thus by [3] 0 E R(A, + C,,), 
and consequently y E R(I + BA). 
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The proof of Theorem 2, since the condition BA is accretive entered 
only to assure that {(I + BA)-lyn} was Cauchy when {m} was 
Cauchy, actually provides the following more general statement con- 
cerning the range of I + BA. 

THEOREM 2O. In Theorem. 2, replace the condition BA accretive by 
the condition (I + BA)-l continuous; then R[I + BA] = X. 

Let us note in particular the following special case, of possible inter- 
est in the theory of noncompact Hamerstein equations. 

COROLLARY 2. Let X be rejexive, let K and F both be multivahed, 
nonlinear, maximal monotone, D(K) = X, D(F) = X*. If (I + KF)-l 
is continuous, the equation 

possesses a solution for every f in X. 

Proof of Theorem 3. Given y in X, we seek an x such that 
y E (I + BA) x. Let C,(x) = - C(y - x) for all x in X; it follows 
that A + C, is m-accretive by Corollary 1 (of Lemma l), or by 
[23, Corollary 10.31 h w  en X* is uniformly convex and C is hemi- 
continuous and accretive. Consequently there exists an x such that 
Ax + C,(x) + 6x contains 6y, i.e., (C + S)(y - x) E Ax, so that 
this is the required x. 

Remark 4. We note that Theorem 3 yields RII + BA] = X 
without BA being accretive. When X is a Hilbert space Theorem 3 
contains for example the linear result of 1141. The condition on B 
in Theorem 3 is essentially that B be “strongly coaccretive” (see 
[4, section 31; also see [14, Corollary 4, and the following Remark 
there]). 

Proof of Theorem 4. Given y in X it will follow that 
~E(I+BA) f x or some x if we have for some x0 a solution of 
(d/dt) x(t) EY - x(t) - BAx(t), x(0) = x0 . For if so, let 

$x(t) = y  - x(t) - 23x(t), x(t) in Ax(t), % = X(h), f&i = +hJ, 

t, --+ co as n -+ 00; since [I (d/dt) x(t)/] d ecreases exponentially there 
exists x E X such that x, --t x. The sequence z, is bounded because 
B-l is bounded, Since X* is uniformly convex and A is m-accretive, 
one has (e.g., see {21]) x E D(A) and x, - z for some z in Ax; since 



156 CALVERT AND GUSTAFSON 

Bz, is bounded and B is weakly closed, Bx, - Bz. It then follows 
from x, + Bx,-+y that x + Bz =y. 

Consider x0 in D(A) and (using the techniques of [4, Theorem 9.231) 
for E > 0 set A, = ~-l(1- (I + A)-l); note that A, is accretive and 
Lipschitzian. By [22], B is demicontinuous; thus BA, is demicontinu- 
ous and accretive, so that by [4, 231 a solution x, of (d/dt) x,(t) = 
y - xc(t) - BA,x,(t) exists, such that ~$0) = x0 . By accretivity, 

and since A is accretive, jl AsxO I/ < 11 x,, 11 for any x0 in Ax,, . Since 
B is bounded, II BA,x, ]I is bounded independently of E; consequently 

II (44 dt)lI ’ b is ounded for t > 0 independently of E. 
For arbitrary but fixed t, > 0, by the above there is a con- 

stant K, such that ]I xc(t)11 < k, for t < t, and E > 0; since 

Y - xc(t) - B&x,(t) is bounded independently of E, there is there- 
fore a constant k, such that /I BA,x,(t)ll < K, for t < t, and E > 0. 
Further, let vs(t) = (1 + d-l xc(t); since B-l is bounded and 
Bcl(xs(t) - uXt>) = BA,x,(t), there is a constant K, such that 
I] x<(t) - v,(t)11 < AZ for t < t, and E > 0. Finally, recall that (e.g., 
see [4, 211) since X* is uniformly convex there is a function 
f : R+ --+ R+, f(s) -+ 0 as s + 0, such that for ]I x I] < K,, , Ij y II < R, 
one has II Jx - Jy jl <f(s) whenever ]I x - y ]I < s. 

Hence for arbitrary positive c and 6 we have from the above, 
using the accretivity of BA appropriately as in [4, proof of Theo- 
rem 9.231, that 

1 II x,(t) - %@)l12 

d %f@,(~ + 6)). (2.6) 

It follows from (2.6) and x,(O) - x8(O) = 0 that for t < t, , 
I] x6(t) - x8(t)l12 < 4t,kJ(k,(e + 6)); consequently as E -+ 0, x, con- 
verges strongly, uniformly for t in [0, t,], to a continuous function 
x : [O, t,] - x. 

Considering now a given t in [0, t,] and Ed --+ 0 as n + 00, we have 

x,,(t) - x(t) and q(t) -+ x(t). Since BA,,xEn(t) and A,,x,,(t) are 
bounded in the reflexive space C, there exists a subsequence, denoted 
E, again, and u and w in X, such that the former sequence converges 
weakly to u and the latter converges weakly to w. Because B is weakly 
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closed, u = Bw, and since A is demiclosed (e.g., see [4 or 23]), w  is 
in Ax(t). Proceeding as, for example, in [4, Theorem 9.231 we 
obtain x(t) weakly continuously differentiable with x(O) = x,, and 
(tip) x(t) E y - x(t) - BAY(t). 

Remark 5. Accretivity of B was used in the above only to con- 
clude in combination with the hemicontinuity of B that B was demi- 
continuous, so the latter (demicontinuity) would suffice for the proof. 
On the other hand, if X is a Hilbert space and both B and BA are 
accretive, then for a > 0, Bol-I(1 - (1 + cuA)-I) is accretive; i.e., 
letting u = (I + orA)-lx, w  = (I + olA)-ly, then 

(Ba-1(x - u) - Bd(y - w), x - y) 

= (B&(x - 24) - Ba-y y - w), (x - 24) - (y - w)) 

+ (B&(x - u) - Ba-yy - w), u - w), (2.7) 

the first term being nonnegative by B accretive, the second term being 
nonnegative by Bcl(x - U) E BAu and Bcl(y - w) E BAw. In this 
case Theorem 4 (with B strongly accretive) therefore contains (as did 
Theorems 1, 2, 3) the basic linear result of [14]. 
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