459 research outputs found
XML Document Adaptation Queries (XDAQ)
Adaptive web applications combine data retrieval on the web with reasoning so as to generate context dependent contents. The data is retrieved either as content or as context specifications. Content data is, for example, fragments of a textbook or e-commerce catalogue, whereas context data is, for example, a user model or a device profile. Current adaptive web applications are often implemented using ad hoc and heterogeneous techniques. This paper describes a novel approach called āXML Document Adaptation Queries (XDAQ)ā requiring less heterogeneous software components. The approach is based on using a web query language for data retrieval (content as well as context) and on a novel generic formalism to express adaptation. The approach is generic in the sense that it is applicable with all web query and transformation languages, for example with XQuery and XSLT
Regulation of surface architecture by symbiotic bacteria mediates host colonization
Microbes occupy countless ecological niches in nature. Sometimes these environments may be on or within another organism, as is the case in both microbial infections and symbiosis of mammals. Unlike pathogens that establish opportunistic infections, hundreds of human commensal bacterial species establish a lifelong cohabitation with their hosts. Although many virulence factors of infectious bacteria have been described, the molecular mechanisms used during beneficial hostāsymbiont colonization remain almost entirely unknown. The novel identification of multiple surface polysaccharides in the important human symbiont Bacteroides fragilis raised the critical question of how these molecules contribute to commensalism. To understand the function of the bacterial capsule during symbiotic colonization of mammals, we generated B. fragilis strains deleted in the global regulator of polysaccharide expression and isolated mutants with defects in capsule expression. Surprisingly, attempts to completely eliminate capsule production are not tolerated by the microorganism, which displays growth deficits and subsequent reversion to express capsular polysaccharides. We identify an alternative pathway by which B. fragilis is able to reestablish capsule production and modulate expression of surface structures. Most importantly, mutants expressing single, defined surface polysaccharides are defective for intestinal colonization compared with bacteria expressing a complete polysaccharide repertoire. Restoring the expression of multiple capsular polysaccharides rescues the inability of mutants to compete for commensalism. These findings suggest a model whereby display of multiple capsular polysaccharides provides essential functions for bacterial colonization during hostāsymbiont mutualism
Recommended from our members
The business of genomic testing: a survey of early adopters
Purpose: The practice of āgenomicā (or āpersonalizedā) medicine requires the availability of appropriate diagnostic testing. Our study objective was to identify the reasons for health systems to bring next-generation sequencing into their clinical laboratories and to understand the process by which such decisions were made. Such information may be of value to other health systems seeking to provide next-generation sequencing testing to their patient populations. Methods: A standardized open-ended interview was conducted with the laboratory medical directors and/or department of pathology chairs of 13 different academic institutions in 10 different states. Results: Genomic testing for cancer dominated the institutional decision making, with three primary reasons: more effective delivery of cancer care, the perceived need for institutional leadership in the field of genomics, and the premise that genomics will eventually be cost-effective. Barriers to implementation included implementation cost; the time and effort needed to maintain this newer testing; challenges in interpreting genetic variants; establishing the bioinformatics infrastructure; and curating data from medical, ethical, and legal standpoints. Ultimate success depended on alignment with institutional strengths and priorities and working closely with institutional clinical programs. Conclusion: These early adopters uniformly viewed genomic analysis as an imperative for developing their expertise in the implementation and practice of genomic medicine
The business of genomic testing: a survey of early adopters
Purpose: The practice of genomic (or personalized ) medicine requires the availability of appropriate diagnostic testing. Our study objective was to identify the reasons for health systems to bring next-generation Sequencing into their clinical laboratories and to understand the process by which such decisions were made. Such information may be of value to other health systems seeking to provide next-generation sequencing-testing to their patient populations. Methods: A standardized open-ended interview was conducted With the laboratory medical directors and/or department of pathology chairs of 13 different academic institutions in 10 different states. Results: Genomic testing for cancer dominated the institutional decision making, with three primary reasons: more effective delivery of cancer care, the perceived need for institutional leadership in the field of genomics, and the premise that genomics will eventually be cost-effective. Barriers to implementation included implementation cost; the time and effort needed to maintain this newer testing; challenges in interpreting genetic variants; establishing the bioinformatics infrastructure; and curating data from medical, ethical, and legal standpoints. Ultimate success depended on alignment with institutional strengths and priorities and working closely with institutional clinical programs. Conclusion: These early adopters uniformly viewed genomic analysis as an imperative for developing their expertise in the implementation and practice of genomic medicine
Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles
Background: The healthy microbiome protects against the development of Clostridium difficile infection (CDI), which typically develops following antibiotics. The microbiome metabolises primary to secondary bile acids, a process if disrupted by antibiotics, may be critical for the initiation of CDI.
Aim: To assess the levels of primary and secondary bile acids associated with CDI and associated microbial changes.
Methods: Stool and serum were collected from patients with (i) first CDI (fCDI), (ii) recurrent CDI (rCDI) and (iii) healthy controls. 16S rRNA sequencing and bile salt metabolomics were performed. Random forest regression models were constructed to predict disease status. PICRUSt analyses were used to test for associations between predicted bacterial bile salt hydrolase (BSH) gene abundances and bile acid levels.
Results: Sixty patients (20 fCDI, 19 rCDI and 21 controls) were enrolled. Secondary bile acids in stool were significantly elevated in controls compared to rCDI and fCDI (P < 0.0001 and P = 0.0007 respectively). Primary bile acids in stool were significantly elevated in rCDI compared to controls (P < 0.0001) and in rCDI compared to fCDI (P = 0.02). Using random forest regression, we distinguished rCDI and fCDI patients 84.2% of the time using bile acid ratios. Stool deoxycholate to glycoursodeoxycholate ratio was the single best predictor. PICRUSt analyses found significant differences in predicted abundances of bacterial BSH genes in stool samples across the groups.
Conclusions: Primary and secondary bile acid composition in stool was different in those with rCDI, fCDI and controls. The ratio of stool deoxycholate to glycoursodeoxycholate was the single best predictor of disease state and may be a potential biomarker for recurrence.American College of Gastroenterology (Clinical Research Award ACGJR-017-2015
Recommended from our members
Dynamics of the Microbiota in Response to Host Infection
Longitudinal studies of the microbiota are important for discovering changes in microbial communities that affect the host. The complexity of these ecosystems requires rigorous integrated experimental and computational methods to identify temporal signatures that promote physiologic or pathophysiologic responses in vivo. Employing a murine model of infectious colitis with the pathogen Citrobacter rodentium, we generated a 2-month time-series of 16S rDNA gene profiles, and quantitatively cultured commensals, from multiple intestinal sites in infected and uninfected mice. We developed a computational framework to discover time-varying signatures for individual taxa, and to automatically group signatures to identify microbial sub-communities within the larger gut ecosystem that demonstrate common behaviors. Application of this model to the 16S rDNA dataset revealed dynamic alterations in the microbiota at multiple levels of resolution, from effects on systems-level metrics to changes across anatomic sites for individual taxa and species. These analyses revealed unique, time-dependent microbial signatures associated with host responses at different stages of colitis. Signatures included a Mucispirillum OTU associated with early disruption of the colonic surface mucus layer, prior to the onset of symptomatic colitis, and members of the Clostridiales and Lactobacillales that increased with successful resolution of inflammation, after clearance of the pathogen. Quantitative culture data validated findings for predominant species, further refining and strengthening model predictions. These findings provide new insights into the complex behaviors found within host ecosystems, and define several time-dependent microbial signatures that may be leveraged in studies of other infectious or inflammatory conditions
Four Lessons in Versatility or How Query Languages Adapt to the Web
Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3Cās GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a āWeb of Dataā
The Vienna history Wiki: a collaborative knowledge platform for the city of Vienna
The Vienna City Archive and the Vienna City Library have joined forces with several other institutions in Vienna, Austria to create the "Wien Geschichte Wiki" (Vienna History Wiki), a knowledge platform for the history of Vienna with more than 34,000 articles and 120,000 visits per month. The wiki is powered by Semantic MediaWiki and serves not only as an online encyclopedia, based on a digitized printed publication for everybody to use and contribute to, but also as a central knowledge base for several administrative departments of the city administration. In a peer-review process, wiki edits are checked before they become visible. The paper highlights the unique aspects of the Vienna History Wiki related to content creation, governance structures and technology choices. A usage log analysis and an online survey have been carried out to gain first insights after six months of operation
- ā¦