175 research outputs found

    Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19

    Get PDF
    The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article

    Magnetic properties and spin structure of MnO single crystal and powder

    Full text link
    Zero field cooled (ZFC)/Field Cooled (FC) magnetization curves of a bulk MnO single crystal show a peculiar peak at low temperatures (~40K) similar to the low temperature peak observed in MnO nanoparticles. In order to investigate the origin of this peak, the spin structure of a MnO single crystal has been studied and compared with a single phase powder sample using magnetometry and polarized neutron scattering. Both magnetometry and polarized neutron diffraction results confirm the antiferromagnetic (AF) phase transition at the N\'eel temperature T_N of 118K, in both powder and single crystal form. However, the low temperature peak in the ZFC/FC magnetization curves is not observed in single phase MnO powder. To better understand the observed behavior, ac susceptibility measurements have been employed. We conclude that the clear peak in the magnetic signal from the single crystal originates from a small amount of ferrimagnetic (FiM) Mn2O3 or Mn3O4 impurities, which is grown at the interfaces between MnO crystal twins

    Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals

    Get PDF
    The magnetic ground state of the Eu2+^{2+} moments in a series of Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} is established. The ground-state magnetic structure of the Eu2+^{2+} spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic c\mathit{c} direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around x\mathit{x} = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2+^{2+} moments, which is mediated by the conduction d\mathit{d} electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu2+^{2+} and Fe2+^{2+} moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals with 0.10 \leqslant x\mathit{x} \leqslant 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.Comment: 10 pages, 9 figure

    Coalgebraic Geometric Logic

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor T on some full subcategory of the category Top of topological spaces and continuous functions. We compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category. Furthermore, we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces

    Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn5_5Ge3_3

    Full text link
    The phase of the quantum-mechanical wave function can encode a topological structure with wide-ranging physical consequences, such as anomalous transport effects and the existence of edge states robust against perturbations. While this has been exhaustively demonstrated for electrons, properties associated with the elementary quasiparticles in magnetic materials are still underexplored. Here, we show theoretically and via inelastic neutron scattering experiments that the bulk ferromagnet Mn5_5Ge3_3 hosts gapped topological Dirac magnons. Although inversion symmetry prohibits a net Dzyaloshinskii-Moriya interaction in the unit cell, it is locally allowed and is responsible for the gap opening in the magnon spectrum. This gap is predicted and experimentally verified to close by rotating the magnetization away from the cc-axis with an applied magnetic field. Hence, Mn5_5Ge3_3 realizes a gapped Dirac magnon material in three dimensions. Its tunability by chemical doping or by thin film nanostructuring defines an exciting new platform to explore and design topological magnons. More generally, our experimental route to verify and control the topological character of the magnons is applicable to bulk centrosymmetric hexagonal materials, which calls for systematic investigation.Comment: 24 pages, 4 figures. Accepted in Nature Communication

    Soft X-ray resonant scattering study of single-crystal LaSr2_2Mn2_2O7_7

    Full text link
    Soft X-ray resonant scattering studies at the Mn LII, IIIL_{\texttt{II, III}}- and the La MIV, VM_{\texttt{IV, V}}- edges of single-crystal LaSr2_2Mn2_2O7_7 are reported. At low temperatures, below TN160T_\texttt{N} \approx 160 K, energy scans with a fixed momentum transfer at the \emph{A}-type antiferromagnetic (0 0 1) reflection around the Mn LII, IIIL_{\texttt{II, III}}-edges with incident linear σ\sigma and π\pi polarizations show strong resonant enhancements. The splitting of the energy spectra around the Mn LII, IIIL_{\texttt{II, III}}-edges may indicate the presence of a mixed valence state, e.g., Mn3+^{3+}/Mn4+^{4+}. The relative intensities of the resonance and the clear shoulder-feature as well as the strong incident σ\sigma and π\pi polarization dependences strongly indicate its complex electronic origin. Unexpected enhancement of the charge Bragg (0 0 2) reflection at the La MIV, VM_{\texttt{IV, V}}-edges with σ\sigma polarization has been observed up to 300 K, with an anomaly appearing around the orbital-ordering transition temperature, TOO220T_{\texttt{OO}} \approx 220 K, suggesting a strong coupling (competition) between them.Comment: Accepted by European Physical Journal

    An overview of the spin dynamics of antiferromagnetic Mn5_5Si3_3

    Full text link
    The metallic compound Mn5_5Si3_3 hosts a series of antiferromagnetic phases which can be controlled by external stimuli such as temperature and magnetic field. In this work, we investigate the spin-excitation spectrum of bulk Mn5_5Si3_3 by combining inelastic neutron scattering measurements and density functional theory calculations. We study the evolution of the dynamical response under external parameters and demonstrate that the spin dynamics of each phase is robust against any combination of temperature and magnetic field. In particular, the high-energy spin dynamics is very characteristic of the different phases consisting of either spin waves or broad fluctuations patterns.Comment: 5 figure

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.
    corecore