99 research outputs found

    Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions

    Get PDF
    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO2). The efficiency of the scCO2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6–10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1–16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h

    Application of isothermal titration calorimetry in evaluation of protein–nanoparticle interactions

    Get PDF
    Nanoparticles (NPs) offer a number of advantages over small organic molecules for controlling protein behaviour inside the cell. Protein binding to the surface of NPs depends on their surface characteristics, composition and method of preparation (Mandal et al. in J Hazard Mater 248–249:238–245, 2013). It is important to understand the binding affinities, stoichiometries and thermodynamical parameters of NP–protein interactions in order to see which interaction will have toxic and hazardous consequences and thus to prevent it. On the other side, because proteins are on the brink of stability, they may experience interactions with some types of NPs that are strong enough to cause denaturation or significantly change their conformations with concomitant loss of their biological function. Structural changes in the protein may cause exposure of new antigenic sites, “cryptic” peptide epitopes, potentially triggering an immune response which can promote autoimmune disease (Treuel et al. in ACS Nano 8(1):503–513, 2014). Mechanistic details of protein structural changes at NP surface have still remained elusive. Understanding the formation and persistence of the protein corona is critical issue; however, there are no many analytical methods which could provide detailed information about the NP–protein interaction characteristics and about protein structural changes caused by interactions with nanoparticles. The article reviews recent studies in NP–protein interactions research and application of isothermal titration calorimetry (ITC) in this research. The study of protein structural changes upon adsorption on nanoparticle surface and application of ITC in these studies is emphasized. The data illustrate that ITC is a versatile tool for evaluation of interactions between NPs and proteins. When coupled with other analytical methods, it is important analytical tool for monitoring conformational changes in proteins

    Thermodynamic study of interactions between ZnO and ZnO binding peptides using isothermal titration calorimetry

    Get PDF
    Whilst material specific peptide binding sequences have been identified using a combination of combinato-rial methods and computational modelling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering con-trol over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC) and alanine mutants of G-12 (G-12A6, G-12A11 and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endo-thermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different pep-tides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol and high adsorption affinity val-ues indicated the occurrence of favourable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions and with continued development, the knowledge gained may be instrumental for simplifi-cation of selection processes of organic molecules for the advancement of material synthesis and design

    The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Full text link

    Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis

    Get PDF
    BACKGROUND: Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. METHODS AND RESULTS: Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. CONCLUSIONS: A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE

    Tamoxifen loaded auto-assembled nanoparticles for oral delivery: cytotoxicity and peremeability studies

    No full text
    The purpose of this study was to characterise and study on cell cultures chitosan/lecithin nanoparticles loaded with tamoxifen (TAM-NCL). The mucoadhesion and the permeation through excised rat intestinal mucosa of the nanoparticles was also investigated TAM-NCL were prepared by injection of methanol solution of lecithin and TAM in a chitosan solution. Cytotoxicity was investigated by MTT test using CaCo-2 and MCF-7 cells at different times and using different concentrations of TAM-NCL. The permeation studies through rat intestinal mucosa were performed in ex-vivo experiments using the Ussing chambers. The TAM-NCL cytotoxicity experiments towards MCF-7 cells showed that only after 24 or 48 h cells viability was reduced. This is in accordance with previous drug release data in which the release of TAM from nanoparticles occurred only when enzymes degraded nanoparticle components. Concerning the permeation trough the intestinal wall, nanoparticles slightly increased tamoxifen permeation compared to a control suspension of tamoxifen. However using enzymes able to degrade specifically the components of the nanoparticles (i.e. lipase contained in pancreatin) the tamoxifen flux trough the intestinal mucosa increased significantly. This increase was negated if a dialysis membrane is interposed as a barrier separating the nanoparticles from the mucosal surface. The permeation experiments on rat intestinal tissue showed then that mucoadhesion and enzymatic degradation of nanocarriers are required to increase the drug flux through the rat intestinal mucosa when chitosan/lecithin nanoparticles are employed as drug delivery system
    • 

    corecore