1,278 research outputs found
Lieb-Thirring Bound for Schr\"odinger Operators with Bernstein Functions of the Laplacian
A Lieb-Thirring bound for Schr\"odinger operators with Bernstein functions of
the Laplacian is shown by functional integration techniques. Several specific
cases are discussed in detail.Comment: We revised the first versio
Convolution-type derivatives, hitting-times of subordinators and time-changed -semigroups
In this paper we will take under consideration subordinators and their
inverse processes (hitting-times). We will present in general the governing
equations of such processes by means of convolution-type integro-differential
operators similar to the fractional derivatives. Furthermore we will discuss
the concept of time-changed -semigroup in case the time-change is
performed by means of the hitting-time of a subordinator. We will show that
such time-change give rise to bounded linear operators not preserving the
semigroup property and we will present their governing equations by using again
integro-differential operators. Such operators are non-local and therefore we
will investigate the presence of long-range dependence.Comment: Final version, Potential analysis, 201
Weyl group multiple Dirichlet series constructed from quadratic characters
We construct multiple Dirichlet series in several complex variables whose
coefficients involve quadratic residue symbols. The series are shown to have an
analytic continuation and satisfy a certain group of functional equations.
These are the first examples of an infinite collection of unstable Weyl group
multiple Dirichlet series in greater than two variables.Comment: incorporated referee's comment
A dimensionally continued Poisson summation formula
We generalize the standard Poisson summation formula for lattices so that it
operates on the level of theta series, allowing us to introduce noninteger
dimension parameters (using the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginary transformation of
theta functions that does not use the Poisson summation formula, our proof of
this generalized Poisson summation formula also provides a new proof of the
standard Poisson summation formula for dimensions greater than 2 (with
appropriate hypotheses on the function being summed). In general, our methods
work to establish the (Voronoi) summation formulae associated with functions
satisfying (modular) transformations of the Jacobi imaginary type by means of a
density argument (as opposed to the usual Mellin transform approach). In
particular, we construct a family of generalized theta series from Jacobi theta
functions from which these summation formulae can be obtained. This family
contains several families of modular forms, but is significantly more general
than any of them. Our result also relaxes several of the hypotheses in the
standard statements of these summation formulae. The density result we prove
for Gaussians in the Schwartz space may be of independent interest.Comment: 12 pages, version accepted by JFAA, with various additions and
improvement
Quantum decision making by social agents
The influence of additional information on the decision making of agents, who
are interacting members of a society, is analyzed within the mathematical
framework based on the use of quantum probabilities. The introduction of social
interactions, which influence the decisions of individual agents, leads to a
generalization of the quantum decision theory developed earlier by the authors
for separate individuals. The generalized approach is free of the standard
paradoxes of classical decision theory. This approach also explains the
error-attenuation effects observed for the paradoxes occurring when decision
makers, who are members of a society, consult with each other, increasing in
this way the available mutual information. A precise correspondence between
quantum decision theory and classical utility theory is formulated via the
introduction of an intermediate probabilistic version of utility theory of a
novel form, which obeys the requirement that zero-utility prospects should have
zero probability weights.Comment: This paper has been withdrawn by the authors because a much extended
and improved version has been submitted as arXiv:1510.02686 under the new
title "Role of information in decision making of social agents
Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions
This paper is aimed to show the essential role played by the theory of
quasi-analytic functions in the study of the determinacy of the moment problem
on finite and infinite-dimensional spaces. In particular, the quasi-analytic
criterion of self-adjointness of operators and their commutativity are crucial
to establish whether or not a measure is uniquely determined by its moments.
Our main goal is to point out that this is a common feature of the determinacy
question in both the finite and the infinite-dimensional moment problem, by
reviewing some of the most known determinacy results from this perspective. We
also collect some properties of independent interest concerning the
characterization of quasi-analytic classes associated to log-convex sequences.Comment: 28 pages, Stochastic and Infinite Dimensional Analysis, Chapter 9,
Trends in Mathematics, Birkh\"auser Basel, 201
Analysis of Fourier transform valuation formulas and applications
The aim of this article is to provide a systematic analysis of the conditions
such that Fourier transform valuation formulas are valid in a general
framework; i.e. when the option has an arbitrary payoff function and depends on
the path of the asset price process. An interplay between the conditions on the
payoff function and the process arises naturally. We also extend these results
to the multi-dimensional case, and discuss the calculation of Greeks by Fourier
transform methods. As an application, we price options on the minimum of two
assets in L\'evy and stochastic volatility models.Comment: 26 pages, 3 figures, to appear in Appl. Math. Financ
U(N|M) quantum mechanics on Kaehler manifolds
We study the extended supersymmetric quantum mechanics, with supercharges
transforming in the fundamental representation of U(N|M), as realized in
certain one-dimensional nonlinear sigma models with Kaehler manifolds as target
space. We discuss the symmetry algebra characterizing these models and, using
operatorial methods, compute the heat kernel in the limit of short propagation
time. These models are relevant for studying the quantum properties of a
certain class of higher spin field equations in first quantization.Comment: 21 pages, a reference adde
On the Global Existence of Bohmian Mechanics
We show that the particle motion in Bohmian mechanics, given by the solution
of an ordinary differential equation, exists globally: For a large class of
potentials the singularities of the velocity field and infinity will not be
reached in finite time for typical initial values. A substantial part of the
analysis is based on the probabilistic significance of the quantum flux. We
elucidate the connection between the conditions necessary for global existence
and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe
The Gisin-Percival stochastic Schrödinger equation from standard quantum filtering theory
We show that the quantum state diffusion equation of Gisin and Percival,
driven by complex Wiener noise, is equivalent up to a global stochastic phase
to quantum trajectory models. With an appropriate feedback scheme, we set up an
analogue continuous measurement model with exactly simulates the Gisin-Percival
quantum state diffusion.Comment: Originally submitted to a Theoretical Physics journal but rejected
with the re-submission instructions to drop my discussion and references to
the papers of Gisin and Percival, which I consider unethical. To be now
submitted to an appropriate Mathematical Physics journal instea
- âŠ