The influence of additional information on the decision making of agents, who
are interacting members of a society, is analyzed within the mathematical
framework based on the use of quantum probabilities. The introduction of social
interactions, which influence the decisions of individual agents, leads to a
generalization of the quantum decision theory developed earlier by the authors
for separate individuals. The generalized approach is free of the standard
paradoxes of classical decision theory. This approach also explains the
error-attenuation effects observed for the paradoxes occurring when decision
makers, who are members of a society, consult with each other, increasing in
this way the available mutual information. A precise correspondence between
quantum decision theory and classical utility theory is formulated via the
introduction of an intermediate probabilistic version of utility theory of a
novel form, which obeys the requirement that zero-utility prospects should have
zero probability weights.Comment: This paper has been withdrawn by the authors because a much extended
and improved version has been submitted as arXiv:1510.02686 under the new
title "Role of information in decision making of social agents