419 research outputs found

    Strongly Asymmetric Tricriticality of Quenched Random-Field Systems

    Full text link
    In view of the recently seen dramatic effect of quenched random bonds on tricritical systems, we have conducted a renormalization-group study on the effect of quenched random fields on the tricritical phase diagram of the spin-1 Ising model in d=3d=3. We find that random fields convert first-order phase transitions into second-order, in fact more effectively than random bonds. The coexistence region is extremely flat, attesting to an unusually small tricritical exponent βu\beta_u; moreover, an extreme asymmetry of the phase diagram is very striking. To accomodate this asymmetry, the second-order boundary exhibits reentrance.Comment: revtex, 4 pages, 2 figs, submitted to PR

    An Analytic Equation of State for Ising-like Models

    Get PDF
    Using an Environmentally Friendly Renormalization we derive, from an underlying field theory representation, a formal expression for the equation of state, y=f(x)y=f(x), that exhibits all desired asymptotic and analyticity properties in the three limits x0x\to 0, xx\to \infty and x1x\to -1. The only necessary inputs are the Wilson functions γλ\gamma_\lambda, γϕ\gamma_\phi and γϕ2\gamma_{\phi^2}, associated with a renormalization of the transverse vertex functions. These Wilson functions exhibit a crossover between the Wilson-Fisher fixed point and the fixed point that controls the coexistence curve. Restricting to the case N=1, we derive a one-loop equation of state for 2<d<42< d<4 naturally parameterized by a ratio of non-linear scaling fields. For d=3d=3 we show that a non-parameterized analytic form can be deduced. Various asymptotic amplitudes are calculated directly from the equation of state in all three asymptotic limits of interest and comparison made with known results. By positing a scaling form for the equation of state inspired by the one-loop result, but adjusted to fit the known values of the critical exponents, we obtain better agreement with known asymptotic amplitudes.Comment: 10 pages, 2 figure

    Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond d=2d=2 Blume-Capel model

    Full text link
    The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase transition regime of the pure model. For the random-bond version several disorder strengths are considered. We present phase diagram points of both pure and random versions and for a particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared to those of the random model. Accepting, for the weak random version, the assumption of the double logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio

    Potts-Percolation-Gauss Model of a Solid

    Full text link
    We study a statistical mechanics model of a solid. Neighboring atoms are connected by Hookian springs. If the energy is larger than a threshold the "spring" is more likely to fail, while if the energy is lower than the threshold the spring is more likely to be alive. The phase diagram and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their fluctuations, are determined using renormalization-group and Monte-Carlo techniques.Comment: 10 pages, 12 figure

    Excitation Spectrum Gap and Spin-Wave Stiffness of XXZ Heisenberg Chains: Global Renormalization-Group Calculation

    Full text link
    The anisotropic XXZ spin-1/2 Heisenberg chain is studied using renormalization-group theory. The specific heats and nearest-neighbor spin-spin correlations are calculated thoughout the entire temperature and anisotropy ranges in both ferromagnetic and antiferromagnetic regions, obtaining a global description and quantitative results. We obtain, for all anisotropies, the antiferromagnetic spin-liquid spin-wave velocity and the Isinglike ferromagnetic excitation spectrum gap, exhibiting the spin-wave to spinon crossover. A number of characteristics of purely quantum nature are found: The in-plane interaction s_i^x s_j^x + s_i^y s_j^y induces an antiferromagnetic correlation in the out-of-plane s_i^z component, at higher temperatures in the antiferromagnetic XXZ chain, dominantly at low temperatures in the ferromagnetic XXZ chain, and, in-between, at all temperatures in the XY chain. We find that the converse effect also occurs in the antiferromagnetic XXZ chain: an antiferromagnetic s_i^z s_j^z interaction induces a correlation in the s_i^xy component. As another purely quantum effect, (i) in the antiferromagnet, the value of the specific heat peak is insensitive to anisotropy and the temperature of the specific heat peak decreases from the isotropic (Heisenberg) with introduction of either type (Ising or XY) anisotropy; (ii) in complete contrast, in the ferromagnet, the value and temperature of the specific heat peak increase with either type of anisotropy.Comment: New results added to text and figures. 12 pages, 18 figures, 3 tables. Published versio

    Ordered phase and phase transitions in the three-dimensional generalized six-state clock model

    Full text link
    We study the three-dimensional generalized six-state clock model at values of the energy parameters, at which the system is considered to have the same behavior as the stacked triangular antiferromagnetic Ising model and the three-state antiferromagnetic Potts model. First, we investigate ordered phases by using the Monte Carlo twist method (MCTM). We confirmed the existence of an incompletely ordered phase (IOP1) at intermediate temperature, besides the completely ordered phase (COP) at low-temperature. In this intermediate phase, two neighboring states of the six-state model mix, while one of them is selected in the low temperature phase. We examine the fluctuation the mixing rate of the two states in IOP1 and clarify that the mixing rate is very stable around 1:1. The high temperature phase transition is investigated by using non-equilibrium relaxation method (NERM). We estimate the critical exponents beta=0.34(1) and nu=0.66(4). These values are consistent with the 3D-XY universality class. The low temperature phase transition is found to be of first-order by using MCTM and the finite-size-scaling analysis

    Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field

    Full text link
    We have presented dynamic phase transition features and stationary-state behavior of a ferrimagnetic small nanoparticle system with a core-shell structure. By means of detailed Monte Carlo simulations, a complete picture of the phase diagrams and magnetization profiles have been presented and the conditions for the occurrence of a compensation point TcompT_{comp} in the system have been investigated. According to N\'{e}el nomenclature, the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has been devoted to investigation of hysteretic response of the particle and we observed the existence of triple hysteresis loop behavior which originates from the existence of a weak ferromagnetic core coupling Jc/JshJ_{c}/J_{sh}, as well as a strong antiferromagnetic interface exchange interaction Jint/JshJ_{int}/J_{sh}. Most of the calculations have been performed for a particle in the presence of oscillating fields of very high frequencies and high amplitudes in comparison with exchange interactions which resembles a magnetic system under the influence of ultrafast switching fields. Particular attention has also been paid on the influence of the particle size on the thermal and magnetic properties, as well as magnetic features such as coercivity, remanence and compensation temperature of the particle. We have found that in the presence of ultrafast switching fields, the particle may exhibit a dynamic phase transition from paramagnetic to a dynamically ordered phase with increasing ferromagnetic shell thickness.Comment: 12 pages, 12 figure

    Symmetry Analysis of Barotropic Potential Vorticity Equation

    Full text link
    Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, FF and β\beta, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F0F\ne 0 there exists a well-defined point transformation to set β=0\beta = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F0F\ne 0 and β=0\beta = 0. Based upon this classification, distinct classes of group-invariant solutions is obtained and extended to the case β0\beta \ne 0.Comment: 6 pages, release version, added reference for section

    Critical Fluctuations and Disorder at the Vortex Liquid to Crystal Transition in Type-II Superconductors

    Full text link
    We present a functional renormalization group (FRG) analysis of a Landau-Ginzburg model of type-II superconductors (generalized to n/2n/2 complex fields) in a magnetic field, both for a pure system, and in the presence of quenched random impurities. Our analysis is based on a previous FRG treatment of the pure case [E.Br\'ezin et. al., Phys. Rev. B, {\bf 31}, 7124 (1985)] which is an expansion in ϵ=6d\epsilon = 6-d. If the coupling functions are restricted to the space of functions with non-zero support only at reciprocal lattice vectors corresponding to the Abrikosov lattice, we find a stable FRG fixed point in the presence of disorder for 1<n<41<n<4, identical to that of the disordered O(n)O(n) model in d2d-2 dimensions. The pure system has a stable fixed point only for n>4n>4 and so the physical case (n=2n = 2) is likely to have a first order transition. We speculate that the recent experimental findings that disorder removes the apparent first order transition are consistent with these calculations.Comment: 4 pages, no figures, typeset using revtex (v3.0

    Segregation in the annihilation of two-species reaction-diffusion processes on fractal scale-free networks

    Full text link
    In the reaction-diffusion process A+BA+B \to \varnothing on random scale-free (SF) networks with the degree exponent γ\gamma, the particle density decays with time in a power law with an exponent α\alpha when initial densities of each species are the same. The exponent α\alpha is α>1\alpha > 1 for 2<γ<32 < \gamma < 3 and α=1\alpha=1 for γ3\gamma \ge 3. Here, we examine the reaction process on fractal SF networks, finding that α<1\alpha < 1 even for 2<γ<32 < \gamma < 3. This slowly decaying behavior originates from the segregation effect: Fractal SF networks contain local hubs, which are repulsive to each other. Those hubs attract particles and accelerate the reaction, and then create domains containing the same species of particles. It follows that the reaction takes place at the non-hub boundaries between those domains and thus the particle density decays slowly. Since many real SF networks are fractal, the segregation effect has to be taken into account in the reaction kinetics among heterogeneous particles.Comment: 4 pages, 6 figure
    corecore