2,063 research outputs found

    Astrometric signatures of self-gravitating protoplanetary discs

    Full text link
    We use high resolution numerical simulations to study whether gravitational instabilities within circumstellar discs can produce astrometrically detectable motion of the central star. For discs with masses of M_disc = 0.1 M_star, which are permanantly stable against fragmentation, we find that the magnitude of the astrometric signal depends upon the efficiency of disc cooling. Short cooling times produce prominent filamentary spiral structures in the disc, and lead to stellar motions that are potentially observable with future high precision astrometric experiments. For a disc that is marginally unstable within radii of \~10 au, we estimate astrometric displacements of 10-100 microarcsec on decade timescales for a star at a distance of 100 pc. The predicted displacement is suppressed by a factor of several in more stable discs in which the cooling time exceeds the local dynamical time by an order of magnitude. We find that the largest contribution comes from material in the outer regions of the disc and hence, in the most pessimistic scenario, the stellar motions caused by the disc could confuse astrometric searches for low mass planets orbiting at large radii. They are, however, unlikely to present any complications in searches for embedded planets orbiting at small radii, relative to the disc size, or Jupiter mass planets or greater orbiting at large radii.Comment: 6 pages, 9 figures, accepted for publication in MNRA

    What can the SEDs of first hydrostatic core candidates reveal about their nature?

    Get PDF
    The first hydrostatic core (FHSC) is the first stable object to form in simulations of star formation. This stage has yet to be observed definitively, although several candidate FHSCs have been reported. We have produced synthetic spectral energy distributions (SEDs) from 3D hydrodynamical simulations of pre-stellar cores undergoing gravitational collapse for a variety of initial conditions. Variations in the initial rotation rate, radius and mass lead to differences in the location of the SED peak and far-infrared flux. Secondly, we attempt to fit the SEDs of five FHSC candidates from the literature and five newly identified FHSC candidates located in the Serpens South molecular cloud with simulated SEDs. The most promising FHSC candidates are fitted by a limited number of model SEDs with consistent properties, which suggests the SED can be useful for placing constraints on the age and rotation rate of the source. The sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS, Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22, Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates that they are likely to be more evolved.Comment: 26 pages, 28 figures. Accepted for publication in MNRA

    Stability of Affine G-varieties and Irreducibility in Reductive Groups

    Full text link
    Let GG be a reductive affine algebraic group, and let XX be an affine algebraic GG-variety. We establish a (poly)stability criterion for points xXx\in X in terms of intrinsically defined closed subgroups HxH_{x} of GG, and relate it with the numerical criterion of Mumford, and with Richardson and Bate-Martin-R\"ohrle criteria, in the case X=GNX=G^{N}. Our criterion builds on a close analogue of a theorem of Mundet and Schmitt on polystability and allows the generalization to the algebraic group setting of results of Johnson-Millson and Sikora about complex representation varieties of finitely presented groups. By well established results, it also provides a restatement of the non-abelian Hodge theorem in terms of stability notions.Comment: 29 pages. To appear in Int. J. Math. Note: this version 4 is identical with version 2 (version 3 is empty

    A supermassive binary black hole with triple disks

    Full text link
    Hierarchical structure formation inevitably leads to the formation of supermassive binary black holes (BBHs) with a sub-parsec separation in galactic nuclei. However, to date there has been no unambiguous detection of such systems. In an effort to search for potential observational signatures of supermassive BBHs, we performed high-resolution smoothed particle hydrodynamics (SPH) simulations of two black holes in a binary of moderate eccentricity surrounded by a circumbinary disk. Building on our previous work, which has shown that gas can periodically transfer from the circumbinary disk to the black holes when the binary is on an eccentric orbit, the current set of simulations focuses on the formation of the individual accretion disks, their evolution and mutual interaction, and the predicted radiative signature. The variation in mass transfer with orbital phase from the circumbinary disk induces periodic variations in the light curve of the two accretion disks at ultraviolet wavelengths, but not in the optical or near-infrared. Searches for this signal offer a promising method to detect supermassive BBHs.Comment: Accepted for publication in the Astrophysical Journal, 16 pages, 11 figures. High Resolution Version is Available at http://www2.yukawa.kyoto-u.ac.jp/~kimitake/bbhs.htm

    Stellar Encounters with Massive Star-Disk Systems

    Full text link
    The dense, clustered environment in which massive stars form can lead to interactions with neighboring stars. It has been hypothesized that collisions and mergers may contribute to the growth of the most massive stars. In this paper we extend the study of star-disk interactions to explore encounters between a massive protostar and a less massive cluster sibling using the publicly available SPH code GADGET-2. Collisions do not occur in the parameter space studied, but the end state of many encounters is an eccentric binary with a semi-major axis ~ 100 AU. Disk material is sometimes captured by the impactor. Most encounters result in disruption and destruction of the initial disk, and periodic torquing of the remnant disk. We consider the effect of the changing orientation of the disk on an accretion driven jet, and the evolution of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap

    Substellar companions and isolated planetary mass objects from protostellar disc fragmentation

    Full text link
    Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time scale that is short compared to the orbital period. We use a combination of hydrodynamic simulations and N-body orbit integrations to study the long term evolution of a fragmenting disc with an initial mass ratio to the star of M_disc/M_star = 0.1. For a disc which is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar mass star) up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 -- in which the companions are close to or beyond the deuterium burning limit -- appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ~1 au should differ from that of stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA

    A longitudinal, observational study examining the relationships of patient satisfaction with services and mental well-being to their clinical course in young people with Type 1 diabetes mellitus during transition from child to adult health services

    Get PDF
    AIM: We hypothesized that participant well-being and satisfaction with services would be positively associated with a satisfactory clinical course during transition from child to adult health care. METHODS: Some 150 young people with Type 1 diabetes mellitus from five diabetes units in England were recruited to a longitudinal study of transition. Each young person was visited at home four times by a research assistant; each visit was 1 year apart. Satisfaction with services (Mind the Gap; MTG) and mental well-being (Warwick-Edinburgh Mental Well-being Scale; WEMWBS) were captured. Change in HbA1c , episodes of ketoacidosis, clinic and retinal screening attendance were used to assess clinical course. In total, 108 of 150 (72%) young people had sufficient data for analysis at visit 4. RESULTS: Mean age at entry was 16 years. By visit 4, 81.5% had left paediatric healthcare services. Median HbA1c increased significantly (P = 0.01) from 69 mmol/mol (8.5%) at baseline to 75 mmol/mol (9.0%) at visit 4. WEMWBS scores were comparable with those in the general population at baseline and were stable over the study period. MTG scores were also stable. By visit 4, some 32 individuals had a 'satisfactory' and 76 a 'suboptimal' clinical course. There were no significant differences in average WEMWBS and MTG scores between the clinical course groups (P = 0.96, 0.52 respectively); nor was there a significant difference in transfer status between the clinical course groups. CONCLUSIONS: The well-being of young people with diabetes and their satisfaction with transition services are not closely related to their clinical course. Investigating whether innovative psycho-educational interventions can improve the clinical course is a research priority
    corecore