2,063 research outputs found
Astrometric signatures of self-gravitating protoplanetary discs
We use high resolution numerical simulations to study whether gravitational
instabilities within circumstellar discs can produce astrometrically detectable
motion of the central star. For discs with masses of M_disc = 0.1 M_star, which
are permanantly stable against fragmentation, we find that the magnitude of the
astrometric signal depends upon the efficiency of disc cooling. Short cooling
times produce prominent filamentary spiral structures in the disc, and lead to
stellar motions that are potentially observable with future high precision
astrometric experiments. For a disc that is marginally unstable within radii of
\~10 au, we estimate astrometric displacements of 10-100 microarcsec on decade
timescales for a star at a distance of 100 pc. The predicted displacement is
suppressed by a factor of several in more stable discs in which the cooling
time exceeds the local dynamical time by an order of magnitude. We find that
the largest contribution comes from material in the outer regions of the disc
and hence, in the most pessimistic scenario, the stellar motions caused by the
disc could confuse astrometric searches for low mass planets orbiting at large
radii. They are, however, unlikely to present any complications in searches for
embedded planets orbiting at small radii, relative to the disc size, or Jupiter
mass planets or greater orbiting at large radii.Comment: 6 pages, 9 figures, accepted for publication in MNRA
What can the SEDs of first hydrostatic core candidates reveal about their nature?
The first hydrostatic core (FHSC) is the first stable object to form in
simulations of star formation. This stage has yet to be observed definitively,
although several candidate FHSCs have been reported. We have produced synthetic
spectral energy distributions (SEDs) from 3D hydrodynamical simulations of
pre-stellar cores undergoing gravitational collapse for a variety of initial
conditions. Variations in the initial rotation rate, radius and mass lead to
differences in the location of the SED peak and far-infrared flux. Secondly, we
attempt to fit the SEDs of five FHSC candidates from the literature and five
newly identified FHSC candidates located in the Serpens South molecular cloud
with simulated SEDs. The most promising FHSC candidates are fitted by a limited
number of model SEDs with consistent properties, which suggests the SED can be
useful for placing constraints on the age and rotation rate of the source. The
sources we consider most likely to be in FHSC phase are B1-bN, CB17-MMS,
Aqu-MM1 and Serpens South candidate K242. We were unable to fit SerpS-MM22,
Per-Bolo 58 and Chamaeleon-MMS1 with reasonable parameters, which indicates
that they are likely to be more evolved.Comment: 26 pages, 28 figures. Accepted for publication in MNRA
Stability of Affine G-varieties and Irreducibility in Reductive Groups
Let be a reductive affine algebraic group, and let be an affine
algebraic -variety. We establish a (poly)stability criterion for points
in terms of intrinsically defined closed subgroups of , and
relate it with the numerical criterion of Mumford, and with Richardson and
Bate-Martin-R\"ohrle criteria, in the case . Our criterion builds on a
close analogue of a theorem of Mundet and Schmitt on polystability and allows
the generalization to the algebraic group setting of results of Johnson-Millson
and Sikora about complex representation varieties of finitely presented groups.
By well established results, it also provides a restatement of the non-abelian
Hodge theorem in terms of stability notions.Comment: 29 pages. To appear in Int. J. Math. Note: this version 4 is
identical with version 2 (version 3 is empty
A supermassive binary black hole with triple disks
Hierarchical structure formation inevitably leads to the formation of
supermassive binary black holes (BBHs) with a sub-parsec separation in galactic
nuclei. However, to date there has been no unambiguous detection of such
systems. In an effort to search for potential observational signatures of
supermassive BBHs, we performed high-resolution smoothed particle hydrodynamics
(SPH) simulations of two black holes in a binary of moderate eccentricity
surrounded by a circumbinary disk. Building on our previous work, which has
shown that gas can periodically transfer from the circumbinary disk to the
black holes when the binary is on an eccentric orbit, the current set of
simulations focuses on the formation of the individual accretion disks, their
evolution and mutual interaction, and the predicted radiative signature. The
variation in mass transfer with orbital phase from the circumbinary disk
induces periodic variations in the light curve of the two accretion disks at
ultraviolet wavelengths, but not in the optical or near-infrared. Searches for
this signal offer a promising method to detect supermassive BBHs.Comment: Accepted for publication in the Astrophysical Journal, 16 pages, 11
figures. High Resolution Version is Available at
http://www2.yukawa.kyoto-u.ac.jp/~kimitake/bbhs.htm
Stellar Encounters with Massive Star-Disk Systems
The dense, clustered environment in which massive stars form can lead to
interactions with neighboring stars. It has been hypothesized that collisions
and mergers may contribute to the growth of the most massive stars. In this
paper we extend the study of star-disk interactions to explore encounters
between a massive protostar and a less massive cluster sibling using the
publicly available SPH code GADGET-2. Collisions do not occur in the parameter
space studied, but the end state of many encounters is an eccentric binary with
a semi-major axis ~ 100 AU. Disk material is sometimes captured by the
impactor. Most encounters result in disruption and destruction of the initial
disk, and periodic torquing of the remnant disk. We consider the effect of the
changing orientation of the disk on an accretion driven jet, and the evolution
of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap
Substellar companions and isolated planetary mass objects from protostellar disc fragmentation
Self-gravitating protostellar discs are unstable to fragmentation if the gas
can cool on a time scale that is short compared to the orbital period. We use a
combination of hydrodynamic simulations and N-body orbit integrations to study
the long term evolution of a fragmenting disc with an initial mass ratio to the
star of M_disc/M_star = 0.1. For a disc which is initially unstable across a
range of radii, a combination of collapse and subsequent accretion yields
substellar objects with a spectrum of masses extending (for a Solar mass star)
up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower
mass objects within a few million years, leaving a small number of very massive
planets or brown dwarfs in eccentric orbits at moderately small radii. Based on
these results, systems such as HD 168443 -- in which the companions are close
to or beyond the deuterium burning limit -- appear to be the best candidates to
have formed via gravitational instability. If massive substellar companions
originate from disc fragmentation, while lower-mass planetary companions
originate from core accretion, the metallicity distribution of stars which host
massive substellar companions at radii of ~1 au should differ from that of
stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA
A longitudinal, observational study examining the relationships of patient satisfaction with services and mental well-being to their clinical course in young people with Type 1 diabetes mellitus during transition from child to adult health services
AIM: We hypothesized that participant well-being and satisfaction with services would be positively associated with a satisfactory clinical course during transition from child to adult health care.
METHODS: Some 150 young people with Type 1 diabetes mellitus from five diabetes units in England were recruited to a longitudinal study of transition. Each young person was visited at home four times by a research assistant; each visit was 1 year apart. Satisfaction with services (Mind the Gap; MTG) and mental well-being (Warwick-Edinburgh Mental Well-being Scale; WEMWBS) were captured. Change in HbA1c , episodes of ketoacidosis, clinic and retinal screening attendance were used to assess clinical course. In total, 108 of 150 (72%) young people had sufficient data for analysis at visit 4.
RESULTS: Mean age at entry was 16 years. By visit 4, 81.5% had left paediatric healthcare services. Median HbA1c increased significantly (P = 0.01) from 69 mmol/mol (8.5%) at baseline to 75 mmol/mol (9.0%) at visit 4. WEMWBS scores were comparable with those in the general population at baseline and were stable over the study period. MTG scores were also stable. By visit 4, some 32 individuals had a 'satisfactory' and 76 a 'suboptimal' clinical course. There were no significant differences in average WEMWBS and MTG scores between the clinical course groups (P = 0.96, 0.52 respectively); nor was there a significant difference in transfer status between the clinical course groups.
CONCLUSIONS: The well-being of young people with diabetes and their satisfaction with transition services are not closely related to their clinical course. Investigating whether innovative psycho-educational interventions can improve the clinical course is a research priority
- …