6,177 research outputs found

    When do correlations increase with firing rates in recurrent networks?

    Get PDF
    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix

    Generation of Hyperentangled Photons Pairs

    Full text link
    We experimentally demonstrate the first quantum system entangled in every degree of freedom (hyperentangled). Using pairs of photons produced in spontaneous parametric downconversion, we verify entanglement by observing a Bell-type inequality violation in each degree of freedom: polarization, spatial mode and time-energy. We also produce and characterize maximally hyperentangled states and novel states simultaneously exhibiting both quantum and classical correlations. Finally, we report the tomography of a 2x2x3x3 system (36-dimensional Hilbert space), which we believe is the first reported photonic entangled system of this size to be so characterized.Comment: 5 pages, 3 figures, 1 table, published versio

    Mechanical cleaning of graphene

    Full text link
    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces charge carrier mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode AFM removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hBN dielectrics exhibited a mobility of ~36,000 cm2/Vs at low temperature.Comment: 4 pages, 4 figure

    Lattice Expansion in Seamless Bi layer Graphene Constrictions at High Bias

    Full text link
    Our understanding of sp2 carbon nanostructures is still emerging and is important for the development of high performance all carbon devices. For example, in terms of the structural behavior of graphene or bi-layer graphene at high bias, little to nothing is known. To this end we investigated bi-layer graphene constrictions with closed edges (seamless) at high bias using in situ atomic resolution transmission electron microscopy. We directly observe a highly localized anomalously large lattice expansion inside the constriction. Both the current density and lattice expansion increase as the bi-layer graphene constriction narrows. As the constriction width decreases below 10 nm, shortly before failure, the current density rises to 4 \cdot 109 A cm-2 and the constriction exhibits a lattice expansion with a uniaxial component showing an expansion approaching 5 % and an isotropic component showing an expansion exceeding 1 %. The origin of the lattice expansion is hard to fully ascribe to thermal expansion. Impact ionization is a process in which charge carriers transfer from bonding states to antibonding states thus weakening bonds. The altered character of C-C bonds by impact ionization could explain the anomalously large lattice expansion we observe in seamless bi-layer graphene constrictions. Moreover, impact ionization might also contribute to the observed anisotropy in the lattice expansion, although strain is probably the predominant factor.Comment: to appear in NanoLetter

    Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data

    Get PDF
    A flexible maximum-entropy component separation algorithm is presented that accommodates anisotropic noise, incomplete sky-coverage and uncertainties in the spectral parameters of foregrounds. The capabilities of the method are determined by first applying it to simulated spherical microwave data sets emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations we find that is very difficult to determine unambiguously the spectral parameters of the galactic components for this data set due to their high level of noise. Nevertheless, we show that is possible to find a robust CMB reconstruction, especially at the high galactic latitude. The method is then applied to these real data sets to obtain reconstructions of the CMB component and galactic foreground emission over the whole sky. The best reconstructions are found for values of the spectral parameters: T_d=19 K, alpha_d=2, beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an estimated statistical error of \sim 22 muK on an angular scale of 7 degrees outside the galactic cut whereas the low galactic latitude region presents contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One subsection and 6 figures added. Main results unchange

    Testing the Gaussianity of the COBE-DMR data with spherical wavelets

    Full text link
    We investigate the Gaussianity of the 4-year COBE-DMR data (in HEALPix pixelisation) using an analysis based on spherical Haar wavelets. We use all the pixels lying outside the Galactic cut and compute the skewness, kurtosis and scale-scale correlation spectra for the wavelet coefficients at each scale. We also take into account the sensitivity of the method to the orientation of the input signal. We find a detection of non-Gaussianity at >99> 99 per cent level in just one of our statistics. Taking into account the total number of statistics computed, we estimate that the probability of obtaining such a detection by chance for an underlying Gaussian field is 0.69. Therefore, we conclude that the spherical wavelet technique shows no strong evidence of non-Gaussianity in the COBE-DMR data.Comment: latex file 7 pages, 6 figures, submitted to MNRA
    • …
    corecore