812 research outputs found

    Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Get PDF
    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties

    Effects of Behavior-Based Driver Feedback Systems on Commercial Long Haul Operator Safety

    Get PDF
    There are large economic and societal costs to commercial motor vehicle crashes. A majority of crashes are precipitated due to driver-related factors. Behavior-based systems that influence drivers with feedback from safety managers can help reduce driver-related risk factors. These systems harness the experience and knowledge of managers along with advanced driver telematics that monitor and record driver behaviors to positively influence driver safety. Safety solutions that focus on modifying driver behaviors thus hold promise for improving the safety record of commercial trucking. In this study, one such feedback system was examined by analyzing data from a commercial trucking fleet, treating the system deployment as a natural experiment. This made it possible, without experimental intervention, to compare drivers before and after system introduction, and to compare drivers that were subject to this system with those that drove with no supervisor feedback. Adverse event data were obtained for drivers in the fleet and weekly event rates were calculated taking into account driving exposure (in miles). Results show that drivers improved after receiving safety feedback and significantly more so than drivers that did not receive feedback

    An artificial neural network model for rainfall forecasting in Bangkok, Thailand

    Get PDF
    This paper presents a new approach using an Artificial Neural Network technique to improve rainfall forecast performance. A real world case study was set up in Bangkok; 4 years of hourly data from 75 rain gauge stations in the area were used to develop the ANN model. The developed ANN model is being applied for real time rainfall forecasting and flood management in Bangkok, Thailand. Aimed at providing forecasts in a near real time schedule, different network types were tested with different kinds of input information. Preliminary tests showed that a generalized feedforward ANN model using hyperbolic tangent transfer function achieved the best generalization of rainfall. Especially, the use of a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness), the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input data, advanced ANN model to apply with continuous data containing rainy and non-rainy period, allowed model to issue forecast at any moment. Additionally, forecasts by ANN model were compared to the convenient approach namely simple persistent method. Results show that ANN forecasts have superiority over the ones obtained by the persistent model. Rainfall forecasts for Bangkok from 1 to 3 h ahead were highly satisfactory. Sensitivity analysis indicated that the most important input parameter besides rainfall itself is the wet bulb temperature in forecasting rainfall

    Analyzing Femorotibial Cartilage Thickness Using Anatomically Standardized Maps: Reproducibility and Reference Data.

    Get PDF
    Alterations in cartilage thickness (CTh) are a hallmark of knee osteoarthritis, which remain difficult to characterize at high resolution, even with modern magnetic resonance imaging (MRI), due to a paucity of standardization tools. This study aimed to assess a computational anatomy method producing standardized two-dimensional femorotibial CTh maps. The method was assessed with twenty knees, processed following three common experimental scenarios. Cartilage thickness maps were obtained for the femorotibial cartilages by reconstructing bone and cartilage mesh models in tree-dimension, calculating three-dimensional CTh maps, and anatomically standardizing the maps. The intra-operator accuracy (median (interquartile range, IQR) of -0.006 (0.045) mm), precision (0.152 (0.070) mm), entropy (7.02 (0.71) and agreement (0.975 (0.020))) results suggested that the method is adequate to capture the spatial variations in CTh and compare knees at varying osteoarthritis stages. The lower inter-operator precision (0.496 (0.132) mm) and agreement (0.808 (0.108)) indicate a possible loss of sensitivity to detect differences in a setting with multiple operators. The results confirmed the promising potential of anatomically standardized maps, with the lower inter-operator reproducibility stressing the need to coordinate operators. This study also provided essential reference data and indications for future research using CTh maps

    High-resolution modelling of interactions between soil moisture and convective development in a mountain enclosed Tibetan Basin

    Get PDF
    Abstract. The Tibetan Plateau plays a significant role in atmospheric circulation and the Asian monsoon system. Turbulent surface fluxes and the evolution of boundary-layer clouds to deep and moist convection provide a feedback system that modifies the plateau's surface energy balance on scales that are currently unresolved in mesoscale models. This work analyses the land surface's role and specifically the influence of soil moisture on the triggering of convection at a cross section of the Nam Co Lake basin, 150 km north of Lhasa using a cloud-resolving atmospheric model with a fully coupled surface. The modelled turbulent fluxes and development of convection compare reasonably well with the observed weather. The simulations span Bowen ratios of 0.5 to 2.5. It is found that convective development is the strongest at intermediate soil moisture. Dry cases with soils close to the permanent wilting point are moisture limited in convective development, while convection in wet soil moisture cases is limited by cloud cover reducing incoming solar radiation and sensible heat fluxes, which has a strong impact on the surface energy balance. This study also shows that local development of convection is an important mechanism for the upward transport of water vapour, which originates from the lake basin that can then be transported to dryer regions of the plateau. Both processes demonstrate the importance of soil moisture and surface–atmosphere interactions on the energy and hydrological cycles of the Tibetan Plateau. This research was funded by the German Research Foundation (DFG) Priority Programme 1372 “Tibetan Plateau: Formation, Climate, Ecosystems” as part of the Atmosphere–Ecology–Glaciology–Cluster (TiP-AEG): FO 226/18- 1,2. The work described in this publication has been supported by the European Commission (Call FP7-ENV-2007-1 grant no. 212921) as part of the CEOP-AEGIS project coordinated by the University of Strasbourg. The map of Nam Co was produced by Sophie Biskop (University of Jena) and Jan Kropacek (University of Tübingen) within DFG-TiP and Phil Stickler of the Cambridge Geography Department Cartography Unit. This publication was funded by the German Research Foundation (DFG) and the University of Bayreuth in the funding programme Open-Access Publishing.This is the final version of the article. It first appeared from European Geosciences Union via http://dx.doi.org/10.5194/hess-19-4023-201

    Comparison of Two Hydrological Models, HEC-HMS and SWAT in Runoff Estimation: Application to Huai Bang Sai Tropical Watershed, Thailand

    Get PDF
    In the present study, the streamflow simulation capacities between the Soil and Water Assessment Tool (SWAT) and the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS) were compared for the Huai Bang Sai (HBS) watershed in northeastern Thailand. During calibration (2007–2010) and validation (2011–2014), the SWAT model demonstrated a Coefficient of Determination (R2) and a Nash Sutcliffe Efficiency (NSE) of 0.83 and 0.82, and 0.78 and 0.77, respectively. During the same periods, the HEC-HMS model demonstrated values of 0.80 and 0.79, and 0.84 and 0.82. The exceedance probabilities at 10%, 40%, and 90% were 144.5, 14.5, and 0.9 mm in the flow duration curves (FDCs) obtained for observed flow. From the HEC-HMS and SWAT models, these indices yielded 109.0, 15.0, and 0.02 mm, and 123.5, 16.95, and 0.02 mm. These results inferred those high flows were captured well by the SWAT model, while medium flows were captured well by the HEC-HMS model. It is noteworthy that the low flows were accurately simulated by both models. Furthermore, dry and wet seasonal flows were simulated reasonably well by the SWAT model with slight under-predictions of 2.12% and 13.52% compared to the observed values. The HEC-HMS model under-predicted the dry and wet seasonal flows by 10.76% and 18.54% compared to observed flows. The results of the present study will provide valuable recommendations for the stakeholders of the HBS watershed to improve water usage policies. In addition, the present study will be helpful to select the most appropriate hydrologic model for humid tropical watersheds in Thailand and elsewhere in the world.Comparison of Two Hydrological Models, HEC-HMS and SWAT in Runoff Estimation: Application to Huai Bang Sai Tropical Watershed, ThailandpublishedVersio

    The Rigidly Rotating Magnetosphere of Sigma Ori E

    Full text link
    We attempt to characterize the observed variability of the magnetic helium-strong star sigma Ori E in terms of a recently developed rigidly rotating magnetosphere model. This model predicts the accumulation of circumstellar plasma in two co-rotating clouds, situated in magnetohydrostatic equilibrium at the intersection between magnetic and rotational equators. We find that the model can reproduce well the periodic modulations observed in the star's light curve, H alpha emission-line profile, and longitudinal field strength, confirming that it furnishes an essentially correct, quantitative description of the star's magnetically controlled circumstellar environment.Comment: 4 pages, 3 figures, accepted by Ap

    Chandra HETGS Multi-Phase Spectroscopy of the Young Magnetic O Star theta^1 Orionis C

    Full text link
    We report on four Chandra grating observations of the oblique magnetic rotator theta^1 Ori C (O5.5 V) covering a wide range of viewing angles with respect to the star's 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle and analyze them in conjunction with new MHD simulations of the magnetically channeled wind shock mechanism on theta^1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray emitting plasma with rotation phase.Comment: 52 pages, 14 figures (1 color), 6 tables. To appear in the Astrophysical Journal, 1 August 2005, v628, issue 2. New version corrects e-mail address, figure and table formatting problem

    X-ray Emission from Young Stellar Objects in the \epsilon Chamaeleontis Group: the Herbig Ae Star HD 104237 and Associated Low-Mass Stars

    Full text link
    We present Chandra-HETGS observations of the Herbig Ae star HD 104237 and the associated young stars comprising lower mass stars, in the 0.15-1.75\msol mass range, in their pre-main sequence phase. The brightest X-ray source in the association is the central system harboring the Herbig Ae primary, and a K3 companion. Its X-ray variability indicates modulation possibly on time scales of the rotation period of the Herbig Ae star, and this would imply that the primary significantly contributes to the overall emission. The spectrum of the Herbig Ae+K3 system shows a soft component significantly more pronounced than in other K-type young stars. This soft emission is reminiscent of the unusually soft spectra observed for the single Herbig Ae stars HD 163296 and AB Aur, and therefore we tentatively attribute it to the Herbig Ae of the binary system. The HETGS spectrum shows strong emission lines corresponding to a wide range of plasma temperatures. The He-like triplet of MgXI and NeIX suggest the presence of plasma at densities of about 101210^{12} cm3^{-3}, possibly indicating accretion related X-ray production mechanism. The analysis of the zero-order spectra of the other sources indicates X-ray emission characteristics typical of pre-main sequence stars of similar spectral type, with the exception of the T Tauri HD104237-D, whose extremely soft emission is very similar to the emission of the classical T Tauri star TW Hya, and suggests X-ray production by shocked accreting plasma.Comment: accepted for publication on the Astrophysical Journa
    corecore