550 research outputs found

    Automatic estimation of flux distributions of astrophysical source populations

    Full text link
    In astrophysics a common goal is to infer the flux distribution of populations of scientifically interesting objects such as pulsars or supernovae. In practice, inference for the flux distribution is often conducted using the cumulative distribution of the number of sources detected at a given sensitivity. The resulting "log(N>S)\log(N>S)-log(S)\log (S)" relationship can be used to compare and evaluate theoretical models for source populations and their evolution. Under restrictive assumptions the relationship should be linear. In practice, however, when simple theoretical models fail, it is common for astrophysicists to use prespecified piecewise linear models. This paper proposes a methodology for estimating both the number and locations of "breakpoints" in astrophysical source populations that extends beyond existing work in this field. An important component of the proposed methodology is a new interwoven EM algorithm that computes parameter estimates. It is shown that in simple settings such estimates are asymptotically consistent despite the complex nature of the parameter space. Through simulation studies it is demonstrated that the proposed methodology is capable of accurately detecting structural breaks in a variety of parameter configurations. This paper concludes with an application of our methodology to the Chandra Deep Field North (CDFN) data set.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS750 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Investigation of the Parameters Affecting the Die Failure in High Extrusion Ratio of Aluminium Square Hollow Profile by Using Viscoplastic Finite Element Modelling

    Get PDF
    The increase of the aluminium profile consumption required the efficient manufacturing process in order to support the aluminium profile product and capacity requirement. The life-time of the extrusion die was one of the important factors that could influence the productivity and quality of the aluminium profiles. This paper was the study of the effect of the extrusion speed on the extrusion load, temperature distributions and the stress concentration in the pothole die. The aluminium square hollow profile size 1.7x1.7 inch with the wall-thickness of 0.7 mm was used in this study. The aluminium initial billet was made of AA6063-T5, which has the diameter of 127 mm and length of 508 mm. This process has the extrusion ratio of about 106, which is considered to be extremely high. Viscoplastic Finite Element Modelling (FEM) was employed to simulate the aluminium hot extrusion process and investigate the results. The simulation results demonstrated that the extrusion load and temperature over the whole extrusion process was not uniform, and the die stress analysis could predict the weak area in the porthole die

    Height Fluctuations and Intermittency of V2O5V_2 O_5 Films by Atomic Force Microscopy

    Full text link
    The spatial scaling law and intermittency of the V2O5V_2 O_5 surface roughness by atomic force microscopy has been investigated. The intermittency of the height fluctuations has been checked by two different methods, first, by measuring scaling exponent of q-th moment of height-difference fluctuations i.e. Cq=C_q = and the second, by defining generating function Z(q,N)Z(q,N) and generalized multi-fractal dimension DqD_q. These methods predict that there is no intermittency in the height fluctuations. The observed roughness and dynamical exponents can be explained by the numerical simulation on the basis of forced Kuramoto-Sivashinsky equation.Comment: 6 pages (two columns), 11 eps. figures, late

    Results of the randomized phase IIB ARCTIC trial of low dose Rituximab in previously untreated CLL

    Get PDF
    ARCTIC was a multi-center, randomized-controlled, open, phase IIB non-inferiority trial in previously untreated Chronic Lymphocytic Leukemia (CLL). Conventional frontline therapy in fit patients is fludarabine, cyclophosphamide and rituximab (FCR). The trial hypothesized that including mitoxantrone with low-dose rituximab (FCM-miniR) would be non-inferior to FCR. 200 patients were recruited to assess the primary endpoint of complete remission (CR) rates according to IWCLL criteria. Secondary endpoints were progression-free survival (PFS), overall survival (OS), overall response rate, minimal residual disease (MRD) negativity, safety and cost-effectiveness. The trial closed following the pre-planned interim analysis. At final analysis, CR rates were 76% FCR vs 55% FCM-miniR [adjusted odds-ratio: 0.37; 95% CI: 0.19–0.73]. MRD-negativity rates were 54% FCR vs 44% FCM-miniR. More participants experienced Serious Adverse Reactions with FCM-miniR (49%) compared to FCR (41%). There are no significant differences between the treatment groups for PFS and OS. FCM-miniR is not expected to be cost-effective over a lifetime horizon. In summary, FCM-miniR is less well tolerated than FCR with an inferior response and MRD-negativity rate and increased toxicity, and will not be taken forward into a confirmatory trial. The trial demonstrated that oral FCR yields high response rates compared to historical series with intravenous chemotherapy

    A Grhl2-dependent gene network controls trophoblast branching morphogenesis

    Get PDF
    Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction

    Telomerase activity and telomere length in primary and metastatic tumors from pediatric bone cancer patients

    Get PDF
    The presence of telomerase activity has been analyzed in almost all tumor types and tumor-derived cell lines. However, there are very few studies that focus on the presence of telomerase activity in bone tumors, and most of them report analysis on very few samples or bone-derived cell lines. The objective of this study was to analyze the telomere length and telomerase activity in primary tumors and metastatic lesions from pediatric osteosarcoma and Ewing's sarcoma patients. The presence of telomerase activity was analyzed by the telomeric repeat amplification protocol assay, and the telomere length was measured by Southern blot. Results were related to survival and clinical outcome. Telomerase activity was detected in 85% of the bone tumor metastases (100% Ewing's sarcomas and 75% osteosarcomas) but only in 12% of the primary tumors (11.1% osteosarcomas and 12.5% Ewing's sarcomas). Bone tumor tissues with telomerase activity had mean telomere lengths 3 kb shorter than those with no detectable telomerase activity (p = 0.041). The presence of telomerase activity was associated with survival (p = 0.009), and longer event-free survival periods were found in patients who lacked telomerase activity compared with those who had detectable telomerase activity levels in their tumor tissues (p = 0.037). The presence of longer telomeres in primary pediatric bone tumors than in metastases could be indicative of alternative mechanisms of lengthening of telomeres for their telomere maintenance rather than telomerase activity. Nevertheless, the activation of telomerase seems to be a crucial step in the malignant progression and acquisition of invasive capability of bone tumors

    Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor

    Get PDF
    The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease

    Purification and Structural Characterization of Siderophore (Corynebactin) from Corynebacterium diphtheriae

    Get PDF
    During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin
    corecore