481 research outputs found

    Burnout among physicians

    Get PDF
    Burnout is a common syndrome seen in healthcare workers, particularly physicians who are exposed to a high level of stress at work; it includes emotional exhaustion, depersonalization, and low personal accomplishment. Burnout among physicians has garnered significant attention because of the negative impact it renders on patient care and medical personnel. Physicians who had high burnout levels reportedly committed more medical errors. Stress management programs that range from relaxation to cognitive-behavioral and patientcentered therapy have been found to be of utmost significance when it comes to preventing and treating burnout. However, evidence is insufficient to support that stress management programs can help reducing jobrelated stress beyond the intervention period, and similarly mindfulness-based stress reduction interventions efficiently reduce psychological distress and negative vibes, and encourage empathy while significantly enhancing physicians’ quality of life. On the other hand, a few small studies have suggested that Balint sessions can have a promising positive effect in preventing burnout; moreover exercises can reduce anxiety levels and exhaustion symptoms while improving the mental and physical well-being of healthcare workers. Occupational interventions in the work settings can also improve the emotional and work-induced exhaustion. Combining both individual and organizational interventions can have a good impact in reducing burnout scores among physicians; therefore, multidisciplinary actions that include changes in the work environmental factors along with stress management programs that teach people how to cope better with stressful events showed promising solutions to manage burnout. However, until now there have been no rigorous studies to prove this. More interventional research targeting medical students, residents, and practicing physicians are needed in order to improve psychological well-being, professional careers, as well as the quality of care provided to patients.Keywords: burnout; health care professionals; stress management; mindfulness-based stress reduction programs; physicians well-bein

    Contribution of National Digital Library of India on the paradigm shift in research and education: A study based on the Central University Kerala

    Get PDF
    Libraries have seen a significant transformation in terms of both resources and services in the 21st century. The emergence and widespread use of digital repositories and digital libraries is an important step in this regard. The Ministry of Education set up the National Digital Library of India (NDLI) for the benefit of Indian academics. In order to better understand how well students and researchers at the Central University of Kerala are aware of the digital resources offered by the NDLI, as well as how they utilize such resources and services, this study will look at both of these factors. This study applied simple random sampling procedures to randomly choose a sample of students and scholars, and then they used online closed questionnaires to collect data from them. The current study explored the state art of NDLI among the Central University Kerala users and found the NDLI\u27s resources and services are not fully exploited, despite the fact that the majority of students are aware of them. Many of the respondents are still ignorant of the NDLI\u27s instruments and have not used the services, which are crucial to their research and academic work. The university library must take the lead step by organizing orientation and awareness programmes

    Tuning Membrane Thickness Fluctuations in Model Lipid Bilayers

    Get PDF
    AbstractMembrane thickness fluctuations have been associated with a variety of critical membrane phenomena, such as cellular exchange, pore formation, and protein binding, which are intimately related to cell functionality and effective pharmaceuticals. Therefore, understanding how these fluctuations are controlled can remarkably impact medical applications involving selective macromolecule binding and efficient cellular drug intake. Interestingly, previous reports on single-component bilayers show almost identical thickness fluctuation patterns for all investigated lipid tail-lengths, with similar temperature-independent membrane thickness fluctuation amplitude in the fluid phase and a rapid suppression of fluctuations upon transition to the gel phase. Presumably, in vivo functions require a tunability of these parameters, suggesting that more complex model systems are necessary. In this study, we explore lipid tail-length mismatch as a regulator for membrane fluctuations. Unilamellar vesicles of an equimolar mixture of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine molecules, with different tail-lengths and melting transition temperatures, are used as a model system for this next level of complexity. Indeed, this binary system exhibits a significant response of membrane dynamics to thermal variations. The system also suggests a decoupling of the amplitude and the relaxation time of the membrane thickness fluctuations, implying a potential for independent control of these two key parameters

    Development of Functional Human NK Cells in an Immunodeficient Mouse Model with the Ability to Provide Protection against Tumor Challenge

    Get PDF
    Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL/6 Rag2−/−/γc−/− and NOD/Scid mice, newborn BALB/c Rag2−/−/γc−/− mice can support the development of human NK cells and CD56+ T cells after intrahepatic injection with hematopoietic stem cells. The human CD56+ cells in BALB/c Rag2−/−/γc−/− mice were able to produce IFN-γ in response to human IL-15 and polyI:C. NK cells from reconstituted Rag2−/−/γc−/− mice were also able to kill and inhibit the growth of K562 cells in vitro and were able to produce IFN-γ in response to stimulation with K562 cells. In vivo, reconstituted Rag2−/−/γc−/− mice had higher survival rates after K562 challenge compared to non-reconstituted Rag2−/−/γc−/− mice and were able to control tumor burden in various organs. Reconstituted Rag2−/−/γc−/− mice represent a model in which functional human NK and CD56+ T cells can develop from stem cells and can thus be used to study human disease in a more clinically relevant environment

    FimH Adhesin of Type 1 Fimbriae Is a Potent Inducer of Innate Antimicrobial Responses Which Requires TLR4 and Type 1 Interferon Signalling

    Get PDF
    Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs). We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-β production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88−/−, Trif−/−, IFN−α/βR−/− or IRF3−/− mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88−/−, IFN-α/βR−/−, IRF3−/− or TLR4−/− mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-β, but not IFN-α or IFN-γ. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC) and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6) mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4−/− mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens

    Genital HSV-2 Infection Induces Short-Term NK Cell Memory

    Get PDF
    NK cells are known as innate immune cells that lack immunological memory. Recently, it has been shown that NK cells remember encounters with chemical haptens that induce contact hypersensitivity and cytomegalovirus infection. Here, we show the existence of NK cell memory following HSV-2 infection. Stimulation with HSV-2 Ags led to higher IFNγ production in NK cells that were exposed 30 days previously to HSV-2, compared to NK cells from naïve mice. More importantly, this increased production of IFNγ in NK cells was independent of B- and T- lymphocytes and specific for the HSV-2 Ags. We also showed that previously exposed NK cells in a B- and T-lymphocyte free environment mediate protection against HSV-2 infection and they are necessary for the protection of mice against HSV-2 infection. Collectively, NK cells remember prior HSV-2 encounters independent of B- and T- lymphocytes leading to protection against HSV-2 mediated morbidity and mortality upon re-exposure

    Recombinant human osteopontin expressed in Nicotiana benthamiana stimulates osteogenesis related genes in human periodontal ligament cells.

    Get PDF
    Tissue engineering aims to utilise biologic mediators to facilitate tissue regeneration. Several recombinant proteins have potential to mediate induction of bone production, however, the high production cost of mammalian cell expression impedes patient access to such treatments. The aim of this study is to produce recombinant human osteopontin (hOPN) in plants for inducing dental bone regeneration. The expression host was Nicotiana benthamiana using a geminiviral vector for transient expression. OPN expression was confirmed by Western blot and ELISA, and OPN was purified using Ni affinity chromatography. Structural analysis indicated that plant-produced hOPN had a structure similar to commercial HEK cell-produced hOPN. Biological function of the plant-produced hOPN was also examined. Human periodontal ligament stem cells were seeded on an OPN-coated surface. The results indicated that cells could grow normally on plant-produced hOPN as compared to commercial HEK cell-produced hOPN determined by MTT assay. Interestingly, increased expression of osteogenic differentiation-related genes, including OSX, DMP1, and Wnt3a, was observed by realtime PCR. These results show the potential of plant-produced OPN to induce osteogenic differentiation of stem cells from periodontal ligament in vitro, and suggest a therapeutic strategy for bone regeneration in the future
    corecore