420 research outputs found

    A discrete time-dependent method for metastable atoms in intense fields

    Full text link
    The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium and hydrogen atoms and molecules are presented. At very high intensity above saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments.Comment: 10 pages, 9 figure, 4 table

    Stability and Complexity of Minimising Probabilistic Automata

    Full text link
    We consider the state-minimisation problem for weighted and probabilistic automata. We provide a numerically stable polynomial-time minimisation algorithm for weighted automata, with guaranteed bounds on the numerical error when run with floating-point arithmetic. Our algorithm can also be used for "lossy" minimisation with bounded error. We show an application in image compression. In the second part of the paper we study the complexity of the minimisation problem for probabilistic automata. We prove that the problem is NP-hard and in PSPACE, improving a recent EXPTIME-result.Comment: This is the full version of an ICALP'14 pape

    Evaluation of body composition as a potential biomarker in spinal muscular atrophy

    Get PDF
    INTRODUCTION: We aimed to investigate the correlation between body composition (BC) and spinal muscular atrophy (SMA)-specific motor function assessments. METHODS: Patients with SMA types I or II, aged 1 to 10\u2009years, were recruited in this cross-sectional study. The protocol included anthropometric measurements, and dual-energy X-ray absoprtiometry to assess fat mass (FM), lean mass (LM), fat-free mass (FFM), FM and FFM indexes (FMI, FFMI), and motor function assessments (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders scale for SMAI, and Hammersmith Functional Motor Scale-Expanded for SMAII). RESULTS: Eighty-eight children were included. All had a higher FM percentage than reference values. Motor function was moderately correlated with body mass index (BMI), FFMI, and LMI in SMAI, and weakly correlated with FFMI, LMI, and LM:FM ratio in SMAII. DISCUSSION: BC shows promise as a potential biomarker for SMA, but further studies are needed

    Markov chain analysis of random walks on disordered medium

    Full text link
    We study the dynamical exponents dwd_{w} and dsd_{s} for a particle diffusing in a disordered medium (modeled by a percolation cluster), from the regime of extreme disorder (i.e., when the percolation cluster is a fractal at p=pcp=p_{c}) to the Lorentz gas regime when the cluster has weak disorder at p>pcp>p_{c} and the leading behavior is standard diffusion. A new technique of relating the velocity autocorrelation function and the return to the starting point probability to the asymptotic spectral properties of the hopping transition probability matrix of the diffusing particle is used, and the latter is numerically analyzed using the Arnoldi-Saad algorithm. We also present evidence for a new scaling relation for the second largest eigenvalue in terms of the size of the cluster, lnλmaxSdw/df|\ln{\lambda}_{max}|\sim S^{-d_w/d_f}, which provides a very efficient and accurate method of extracting the spectral dimension dsd_s where ds=2df/dwd_s=2d_f/d_w.Comment: 34 pages, REVTEX 3.

    On Optimal Short Recurrences for Generating Orthogonal Krylov Subspace Bases

    Full text link

    Time delay between photoemission from the 2p and 2s subshells of Neon

    Get PDF
    The R-Matrix incorporating Time (RMT) method is a new method for solving the time-dependent Schroedinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond XUV pulse. Time delays due to XUV pulses in the range 76-105 eV are presented. For an XUV pulse at the experimentally relevant 105.2 eV, we calculate the time delay to be 10.2 +/- 1.3 attoseconds, somewhat larger than estimated by other theoretical calculations, but still a factor two smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modelling correlated-electron dynamics within the neon atom and the residual Ne(+) ion. A time delay of 14.5 +/- 1.5 attoseconds was observed, compared to a 16.7 +/- 1.5 attosecond result using a single-configuration representation of the residual Ne(+) ion.Comment: 4 pages, 3 figures, 1 tabl

    Stability and Decay Rates of Non-Isotropic Attractive Bose-Einstein Condensates

    Full text link
    Non-Isotropic Attractive Bose-Einstein condensates are investigated with Newton and inverse Arnoldi methods. The stationary solutions of the Gross-Pitaevskii equation and their linear stability are computed. Bifurcation diagrams are calculated and used to find the condensate decay rates corresponding to macroscopic quantum tunneling, two-three body inelastic collisions and thermally induced collapse. Isotropic and non-isotropic condensates are compared. The effect of anisotropy on the bifurcation diagram and the decay rates is discussed. Spontaneous isotropization of the condensates is found to occur. The influence of isotropization on the decay rates is characterized near the critical point.Comment: revtex4, 11 figures, 2 tables. Submitted to Phys. Rev.

    Spectrum of the non-abelian phase in Kitaev's honeycomb lattice model

    Get PDF
    The spectral properties of Kitaev's honeycomb lattice model are investigated both analytically and numerically with the focus on the non-abelian phase of the model. After summarizing the fermionization technique which maps spins into free Majorana fermions, we evaluate the spectrum of sparse vortex configurations and derive the interaction between two vortices as a function of their separation. We consider the effect vortices can have on the fermionic spectrum as well as on the phase transition between the abelian and non-abelian phases. We explicitly demonstrate the 2n2^n-fold ground state degeneracy in the presence of 2n2n well separated vortices and the lifting of the degeneracy due to their short-range interactions. The calculations are performed on an infinite lattice. In addition to the analytic treatment, a numerical study of finite size systems is performed which is in exact agreement with the theoretical considerations. The general spectral properties of the non-abelian phase are considered for various finite toroidal systems.Comment: 32 pages, 13 figures; corrected typos and changed SU(2)_2 to Isin
    corecore