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Abstract

The spectral properties of Kitaev’s honeycomb lattice model are investigated both analytically
and numerically with the focus on the non-abelian phase of the model. After summarizing the fer-
mionization technique which maps spins into free Majorana fermions, we evaluate the spectrum of
sparse vortex configurations and derive the interaction between two vortices as a function of their
separation. We consider the effect vortices can have on the fermionic spectrum as well as on the
phase transition between the abelian and non-abelian phases. We explicitly demonstrate the 2n-fold
ground state degeneracy in the presence of 2n well separated vortices and the lifting of the degener-
acy due to their short-range interactions. The calculations are performed on an infinite lattice. In
addition to the analytic treatment, a numerical study of finite size systems is performed which is
in exact agreement with the theoretical considerations. The general spectral properties of the non-
abelian phase are considered for various finite toroidal systems.
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1. Introduction

Topological quantum computation [1–4] is certainly among the most exotic proposals
for performing fault-tolerant quantum information processing. This approach has
attracted considerable interest, since it is closely related to the problem of classifying topo-
logically ordered phases in various condensed matter systems. The connection is provided
by anyonic quasiparticles, which appear as states of topologically ordered systems with
non-trivial statistical properties. Some of these anyon models can support universal quan-
tum computation. Up to now, no complete classification of topological phases exists in
terms of their physical properties or their computational power. This is due to the small
number of analytically treatable models that exhibit topological behavior. The most stud-
ied arena is the celebrated fractional Quantum Hall effect [5,6] appearing in a two-dimen-
sional electron gas when it is subject to a perpendicular magnetic field.

Recently various two-dimensional lattice models exhibiting topological behavior have
been proposed [7–13] that enjoy analytic tractability. One such lattice proposal is the hon-
eycomb model introduced by Alexei Kitaev [10]. It consists of a two-dimensional honey-
comb lattice with spins at its vertices subject to highly anisotropic spin–spin interactions.
This model has several remarkable features. It is exactly solvable and can thus be studied
analytically. For particular values of the couplings, the model can be mapped to Z2 gauge
theory on a square lattice (the toric code), which supports abelian anyons. This anyon
model has been employed for performing various quantum information tasks [2]. When
one adds an external magnetic field, the model supports non-abelian Ising anyons. Even
though neither model supports universal quantum computation, particular variations of
the latter have been considered for this purpose [14,15]. One expects that when the cou-
plings of the honeycomb lattice model are varied, the system will undergo a phase transi-
tion between the abelian and non-abelian phases. The existence of the different phases is
only argued in the original work [10] based on mathematical considerations and no rigor-
ous presentation of the transition is provided.

So far, the studies on Kitaev’s honeycomb lattice model have concentrated on the abe-
lian phase [16–18]. Here we present an extensive study of its spectral properties in the pres-
ence of an external magnetic field. Solving the model for various sparse vortex
configurations gives us qualitative and quantitative results for the behavior of the spec-
trum in the non-abelian phase. The study includes the explicit demonstration of zero
modes in the presence of well separated vortices and the lifting of the degeneracy due to
their short-range interaction. These properties are subsequently connected to the proper-
ties of the Ising anyon model giving direct evidence that the low energy behavior of the
non-abelian phase is indeed captured by this model. In addition, we consider the stability
of the different phases, which is of importance when one is interested in physically realizing
the model [19]. The analytic calculations are supported by exact numeric diagonalizations
of finite size systems. The exact agreement between the analytic and numeric solutions for
these finite size systems is demonstrated and the effect of an external effective magnetic
field on finite size systems is discussed. Our work generalizes the analysis in [17] performed
by one of the authors, where only the abelian phases in the limiting vortex-free and full-
vortex cases were considered.

The paper is organized as follows. In Section 2 we give an overview of the honeycomb
lattice model. There we outline the analytic approach for solving the model for various
vortex configurations by employing Majorana fermionization. Section 3 provides explic-
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itly the analytic solution for the limiting cases of vortex-free and full-vortex configura-
tions. These calculations are subsequently generalized to sparse vortex configurations. Sec-
tion 4 forms the main body of our work. There we analyze in detail the behavior of the
spectrum in different parts of the phase space and study how it is modified due to the pres-
ence of vortices. A connection to the Ising anyon model is provided. In Section 5 we study
exact numerical diagonalization of various finite size systems and show the equivalence
with the analytic results. Final remarks and conclusions are given in Section 6.
2. The spectrum of arbitrary vortex configurations

2.1. The honeycomb lattice model

We briefly review here the honeycomb lattice model and its analytical treatment as
described in [10]. The model is defined on a honeycomb lattice K with spins residing at
each site. The sites are bi-colored black and white such that K ¼ KB [ KW , where KB

and KW are two triangular sublattices. We shall consider the following Hamiltonian

H ¼ �J x

X
x-links

rx
i r

x
j � J y

X
y-links

ry
i r

y
j � J z

X
z-links

rz
ir

z
j � K

X
i;j;k

rx
i r

y
jr

z
k; ð1Þ

where J x; J y and J z are positive coupling strengths along the x-, y- and z-links, respectively,
as shown in Fig. 1(a). The three-spin interaction, or the K-term, on the right hand side can
be obtained from a perturbative expansion when we apply a weak (Zeeman) magnetic field
of the form H h ¼ h � r. In this case K is given by K � hxhy hz

J2 , and this model is assumed to
approximate the one with a Zeeman term when K � J x; J y ; J z. Only this third order term
in the perturbative expansion will be of interest to us, since it is the lowest order term
breaking time reversal invariance [10]. The summations in the effective magnetic field term
run over site triples such that every plaquette p contributes the six terms

Kðrz
1r

y
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x
3 þ rx

2r
z
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4 þ ry

3r
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4r

z
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Fig. 1. The bi-colorable honeycomb lattice. (a) Depending on their orientation the links are labeled as x, y and z.
(b) A single plaquette p with its sites enumerated. (c) Summation convention for each elementary unit cell. Solid
arrows indicate nearest neighbor interactions along x-, y- or z-links, whereas the dashed arrows indicate next to
nearest neighbor interactions originating from the K-term [10]. (d) The elementary unit cell with lattice basis
vectors nx and ny .
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The sites of a single plaquette have been enumerated as shown in Fig. 1(b). The Hamilto-
nian (1) commutes with the plaquette operators defined by

ŵp ¼ rx
1r

y
2r

z
3r

x
4r

y
5r

z
6;

Y
p

ŵp ¼ I ; ð3Þ

where the product is taken over all plaquettes of a compact lattice and I is the identity
operator. The eigenvalue wp ¼ �1 is interpreted as having a vortex on plaquette p. The
constraint in (3) implies that the vortices always come in pairs. Since wp are conserved
quantities, one can fix the underlying vortex configuration and consider the Hamiltonian
over this sector. This would not be possible when the usual Zeeman term were employed,
since it does not commute with the plaquette operators. Thus, the magnetic field induces
hopping of the vortices between neighboring plaquettes and their number is not necessarily
conserved.

The Hamiltonian can be diagonalized by representing the spin operators with Majorana
fermions. Following [10,17] we introduce two fermionic modes a1 and a2 residing at each
lattice site. The corresponding Majorana fermions are given by

c � a1 þ ay1; bx � a1 � ay1
i

; by � a2 þ ay2; bz � a2 � ay2
i

: ð4Þ

We encode the spin at each site at the subspace where both of the fermionic modes
are either empty or full. In terms of the four Majorana fermions, this means that we
need to project down to a two-dimensional subspace, the physical space L, by
employing the projector D ¼ bxbybzc, i.e., j Wi 2 L() D j Wi ¼j Wi. The representa-
tion of the spin matrices at site i is then given in terms of the Majorana fermions
by ra

i ¼ iba
i ci, which satisfy the Pauli algebra when restricted in L (note that

½Di; ra
j � ¼ 0). It follows that

ra
i r

a
j ¼ �iûijcicj and rx

i r
y
jr

z
k ¼ �iûik ûjkcicj; ð5Þ

where we have defined the operators

ûij ¼ iba
i ba

j ; ðûij ¼ �ûji; û2
ij ¼ 1; ûyij ¼ ûijÞ; ð6Þ

with a ¼ x; y; z depending whether i 2 KB and j 2 KW are connected by a x-, y- or z-link,
respectively. Consequently, Hamiltonian (1) takes the form

H ¼ i

4

X
i;j2K

Âijcicj; Âij ¼ 2J ijûij þ 2K
X

k

ûik ûjk: ð7Þ

The explicit appearance of the constraint D in (5) has been omitted, as we consider only
operations in the physical subspace L. The couplings are given by J ij ¼ J x; J y or J z. The
summations in the Hamiltonian (7) are most conveniently expressed pictorially (see
Fig. 1(c)). The solid lines correspond to nearest neighbor (the first term of Aij in (7))
and the dashed lines to next to nearest neighbor summation (the second term of Aij in
(7)). The antisymmetry of the u’s in (6) is taken into account by using a convention such
that one assigns an overall + (�) to every term involving sites i 2 KB and j 2 KW when the
arrow points from i to j (j to i). If two sites are not connected by an arrow the correspond-
ing Aij element is zero.
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The plaquette operators (3) can be written in terms of the û’s as

ŵp ¼
Y

i;j2op

ûij; i 2 KB; j 2 KW ; ð8Þ

where op denotes the boundary of plaquette p. Also, one can check that ½H ; ûij� ¼ 0. These
observations imply that after performing the fermionization, the underlying vortex config-
uration can be fixed by specifying the eigenvalues uij ¼ �1 of the operators ûij on every
link of the model. The eigenvalue uij ¼ �1 means that there is a string passing through
the link ij that either connects two vortices or belongs to a loop. The locations p of these
vortices are determined by the eigenvalues wp ¼ �1 of the plaquette operators.
2.2. Solution for periodic vortex configurations

Let us now consider in more detail the form of Hamiltonian (7) for various periodic
vortex configurations and its diagonalization by using Fourier transform. Without affect-
ing the physics of our system we shall deform the original honeycomb lattice to a square
lattice by taking the length of z-links to zero and choosing the lattice basis vectors to be
nx ¼ ð1; 0Þ and ny ¼ ð0; 1Þ. The resulting square lattice is shown in Fig. 2.

First we determine the unit cell of our periodic vortex lattice. The simplest possible
choice contains a z-link of the honeycomb lattice, or in other words a single site on
the square lattice. We refer to this choice of unit cell as the elementary cell. In order
to employ Fourier transform in diagonalizing the Hamiltonian the underlying vortex
configuration must be periodic with respect to the choice of the unit cell. For the ele-
mentary cell there is only one such configuration—the vortex-free configuration [10].
The full-vortex configuration, i.e., a vortex on every plaquette, can be solved by tak-
ing two elementary cells in which û alternates its sign along one direction [17]. How-
ever, our aim is to go beyond these two limiting cases and consider arbitrary sparse
vortex configurations. To do this, we define a generalized ðM ;NÞ-unit cell, which con-
tains MN elementary cells. On the square lattice the basis vectors take the simple
form

vx ¼ Mnx ¼ ðM ; 0Þ; vy ¼ Nny ¼ ð0;NÞ: ð9Þ
Fig. 2. The square lattice representation of the honeycomb lattice. Every vertex contains one black and one white
site connected by a single z-link of the initial lattice. The basis vectors nx and ny (Fig. 1(d)) become orthogonal
unit vectors along the x- and y-links.
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An arbitrary site i on the original honeycomb lattice can be labeled by the triplet
i! ðr; k; kÞ, where r is a vector indicating the location of the unit cell, the index pair
k ¼ ðm; nÞ; 1 6 m 6 M ; 1 6 n 6 N ; specifies a particular elementary cell inside the gen-
eralized unit cell and k ¼ 1; 2 is an index specifying whether the site belongs to KB or
KW . If C denotes the number of unit cells, there are altogether 2MNC sites on the
lattice.

Using this notation the Hamiltonian (7) can be written as

H ¼ i

4

X
r;v

XðM ;NÞ

k;l

X2

k;l¼1

AkkllðvÞckkðrÞcllðrþ vÞ; ð10Þ
where the vector v is summed over all linear combinations of the lattice basis vectors (9).
Since ½H ; û� ¼ 0, the operators û (6) appearing in Akkll (7) have been replaced with their
eigenvalues u ¼ �1. The antisymmetry of the operators û is included in the summation
convention (Fig. 1(c)). The properly normalized Fourier transformation of the operators
ckk is given by

ckkðrÞ ¼
ffiffiffiffi
2

C

r Z p=M

�p=M

dpxffiffiffiffiffiffiffiffiffiffiffiffi
2p=M

p Z p=N

�p=N

dpyffiffiffiffiffiffiffiffiffiffiffiffi
2p=N

p eip�rckkðpÞ: ð11Þ
Substituting this into (10) we obtain the canonical form

H ¼ 1

2

Z p=M

�p=M

dpx

2p=M

Z p=N

�p=N

dpy

2p=N

c1ðpÞ
c2ðpÞ

� �y A11ðpÞ A12ðpÞ
A21ðpÞ A22ðpÞ

� �
c1ðpÞ
c2ðpÞ

� �
; ð12Þ
where c
y
kðpÞ ¼ ðc

y
kð1;1ÞðpÞ; . . . ; cykðM ;NÞðpÞÞ, and AklðpÞ are matrices with elements

½AklðpÞ�kl ¼
P

viAkkllðvÞe�ip�v. This Hamiltonian is a generalization of the one obtained in
[10] with the exception that the single entries of the 2	 2 Hamiltonian are replaced here
with MN 	MN matrices.

The off-diagonal blocks correspond to nearest neighbor interactions. The non-vanish-
ing elements of the Hamiltonian for arbitrary ðM ;NÞ-unit cells are given by

cy1A12c2 ¼ 2iðþuk;k J z cy1;kc2;k

þuk;k�nx J xe
idðm�1Þp�vx cy1;kc2;k�nx

þuk;k�ny J ye
idðn�1Þp�vy cy1;kc2;k�ny Þ;

ð13Þ

cy2A21c1 ¼ 2ið�uk;k J z cy2;kc1;k

�uk;kþnx J xe
�idðm�MÞp�vx cy2;kc1;kþnx

�uk;kþny J ye
�idðn�NÞp�vy cy2;kc1;kþny Þ;

ð14Þ
where the addition in the indices k ¼ ðm; nÞ is understood (mmod M, nmodN) and
dðxÞ ¼ 1 for x ¼ 0 and dðxÞ ¼ 0 otherwise. The diagonal blocks correspond to next-to-
nearest neighbor couplings and are given by
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cy1A11c1 ¼ 2iKðþuk
k;kþny

e�idðn�NÞp�vy cy1;kc1;kþny

�uk�nx
k;k�nxþny

eidðm�1Þp�vx e�idðn�NÞp�vy cy1;kc1;k�nxþny

�uk
k;kþnx

e�idðm�MÞp�vx cy1;kc1;kþnx

þuk�ny

k;kþnx�ny
e�idðm�MÞp�vx eidðn�1Þp�vy cy1;kc1;kþnx�ny

þuk�nx
k;k�nx

eidðm�1Þp�vx cy1;kc1;k�nx

�uk�ny

k;k�ny
eidðn�1Þp�vy cy1;kc1;k�ny Þ:

ð15Þ

c
y
2A22c2 ¼ 2iKð�ukþny

k;kþny
e�idðn�NÞp�vy cy2;kc2;kþny

þukþny

k;k�nxþny
eidðm�1Þp�vx e�idðn�NÞp�vy cy2;kc2;k�nyþny

þukþnx
k;kþnx

e�idðm�MÞp�vx cy2;kc2;kþnx ;

�ukþnx
k;kþnx�ny

e�idðm�MÞp�vx eidðn�1Þp�vy cy2;kc2;kþnx�ny

�uk
k;k�nx

eidðm�1Þp�vx cy2;kc2;k�nx

þuk
k;k�ny

eidðn�1Þp�vy cy2;kc2;k�ny Þ;

ð16Þ

where we have used the short-hand notation uj
k;l � uk;juj;l. Both A11 and A22 are Hermitian,

which can be checked by taking first Hermitian conjugates and subsequently shifting the
indices accordingly. Likewise, one can check the relations,

A12 ¼ Ay21 and A22 ¼ �AT
11: ð17Þ

that guarantee the Hermiticity of A.
The expressions derived above give the most general expression for the Hamiltonian of

the honeycomb lattice model. To proceed with the diagonalization, one needs to specify
the underlying vortex configuration, i.e., the values of u on each link. Since all bi-colorable
Hamiltonians have a double spectrum [10], we know that the diagonalization of (12) will
give the general form

H ¼
Z p=M

�p=M

dpx

2p=M

Z p=N

�p=N

dpy

2p=N

XMN

i¼1

j �iðpÞ j byi bi �
XMN

i¼1

j �iðpÞ j
2

 !
; ð18Þ

where bi are MN fermionic operators and �iðpÞ are MN functions to be determined. The latter
correspond to the eigenvalues��iðpÞof the matrix AðpÞ. Their exact form has to be calculated
separately for each choice of unit cell and vortex configuration. The ground state and the first
excited state corresponding to a particular vortex configuration are given by

j gsi ¼
YMN

i¼1

Y
�p6px;py6p

biðpÞ j 0i; j 1i ¼ by1ðp0Þ j gsi; ð19Þ

where j 0i is a state with no Majorana fermions and p0 is the momentum minimizing the
lowest lying eigenvalue �1ðpÞ, i.e., minp j �1ðpÞ j¼ �1ðp0Þ. It follows that the corresponding
total ground state energy, E, and the fermion gap, D, are given by
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E ¼ �
Z p=M

�p=M

dpx

2p=M

Z p=N

�p=N

dpy

2p=N

XMN

i¼1

j �iðpÞ j
2

; ð20Þ

D ¼ min
p
j �1ðpÞ j : ð21Þ
3. Analytic results at the thermodynamic limit

In this section we present analytic solutions to the two limiting vortex configura-
tions: the vortex-free and full-vortex configurations. Furthermore, we outline how
the generalized unit cells can be used to study configurations, where the separation
between two vortices is varied. This will be later used to study the behavior of the
relative ground state energies and fermion gaps as the function of the vortex
separation.
3.1. The vortex-free configuration

The vortex-free configuration is achieved by setting

uk;l ¼ 1; 8k; l: ð22Þ
This configuration is periodic with respect to each z-link and thus we can choose a (1, 1)-
unit cell (see Fig. 3(a)). The off-diagonal, (13), and diagonal, (15), elements are then given
by

A12ðpÞ ¼ 2iðJ z þ J xe
ip�vx þ J ye

ip�vy Þ ¼ if ðpÞ;
A11ðpÞ ¼ 4Kðsin½p � ðvx � vyÞ� þ sinðp � vyÞ � sinðp � vxÞÞ ¼ gðpÞ:

Inserting these together with (17) into (12), we obtain a 2	 2 Hamiltonian which is diag-
onalized by introducing the fermionic operator

bðpÞ ¼ K c2ðpÞ þ i
�ðpÞ � gðpÞ

f ðpÞ c1ðpÞ
� �

; K2 ¼ j f ðpÞj2

ð�ðpÞ þ gðpÞÞ2þ j f ðpÞj2
;

a b

Fig. 3. (a) The vortex-free configuration is created by setting u = 1 on all links. The configuration is periodic with
respect to a (1,1)-unit cell. (b) The full-vortex configuration is created by alternating the value of the u’s on y-links
in the x-direction. We take u = 1 on all x- and z-links. The configuration is periodic with respect to a (2,1)-unit
cell. The solid squares denote the location of the vortices and the dashed lines indicate the strings along which
u = �1.
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where

�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j f ðpÞj2 þ gðpÞ2

q
;

j f ðpÞj2 ¼ 4ðJ 2
x þ J 2

y þ J 2
z þ 2ðJ xJ z cos px þ J xJ y cosðpx � pyÞ þ J yJ z cos pyÞÞ;

gðpÞ2 ¼ 16K2ðsin py � sin px þ sinðpx � pyÞÞ
2
:

The eigenvalues of the Hamiltonian are given by ��ðpÞ, and thus the total ground state
energy (20) and the fermion gap (21) are given by

E0 ¼ �
Z p

�p

dpx

2p

Z p

�p

dpy

2p
�ðpÞ

2
; ð23Þ

D0 ¼ min
p
j �ðpÞ j : ð24Þ

These results agree with the ones obtained in [10,17].

3.2. The full-vortex configuration

The full-vortex configuration can be obtained by choosing a (2,1)-unit cell and setting

uk;l ¼
�1; k ¼ ð1; 1Þ and l ¼ k � ny ;

1; otherwise:

�
ð25Þ

Fig. 3(b) illustrates the choice of unit cell for this case. Eqs. (13) and (15) become

A12 ¼ 2i
J z � J ye

ip�vy J xe
ip�vx

J x J z þ J yeip�vy

 !
and

A11 ¼ 2iK
eip�vy � e�ip�vy eip�vx � 1� eip�vy � eip�ðvx�vy Þ

eip�ðvy�vxÞ � e�ip�vx þ 1þ e�ip�vy �eip�vy þ e�ip�vy

 !
:

Inserting these into (12) and diagonalizing the resulting 4	 4 Hamiltonian we obtain the
eigenvalues

�ðpÞ ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðpÞ � 2

ffiffiffiffiffiffiffiffiffi
gðpÞ

pq
; ð26Þ

where

f ðpÞ ¼ J 2
x þ J 2

y þ J 2
z þ 4K2ðsin2ðpx � pyÞ þ sin2 py þ cos2 pxÞ;

gðpÞ ¼ J 2
xJ 2

y cos2ðpx � pyÞ þ J 2
xJ 2

z sin2 px þ J 2
y J 2

z cos2 py

þ 4K2½J 2
x sin2 py þ J 2

y cos2 px þ J 2
x sin2ðpx � pyÞ

� ðJ xJ y þ J xJ z þ J yJ zÞ sinðpx � pyÞ sin py cos px�:

The analytic expressions of the corresponding eigenvectors are not presented here as they are
too lengthy. When we set K ¼ 0 our results agree with the analytic calculations performed in
[17] in the absence of the K-term. The total ground state energy (20) is now given by

Efv ¼ �
Z p=2

�p=2

dpx

p

Z p

�p

dpy

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðpÞ þ 2

ffiffiffiffiffiffiffiffiffi
gðpÞ

pq
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðpÞ � 2

ffiffiffiffiffiffiffiffiffi
gðpÞ

pq� �
; ð27Þ



Fig. 4. (M,N)-unit cell containing a pair of vortices separated by s plaquettes. s = 0 means that the vortices
occupy neighboring plaquettes. The solid squares in the plaquettes indicate the location of the vortices and the
dashed line indicate the string along which u = �1 on all y-links. On all other links u = 1.
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and the fermionic gap (21) becomes

Dfv ¼ min
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðpÞ � 2

ffiffiffiffiffiffiffiffiffi
gðpÞ

pq���� ����: ð28Þ
3.3. Sparse vortex configurations

We turn next to sparse vortex configurations in order to study the interactions between
vortices. This is done by considering how the ground state energies and fermion gaps of 2-
vortex configurations behave when the separation between vortices is varied. A configura-
tion with two vortices separated by s plaquettes is created, for instance, by selecting an
ðM ;NÞ-unit cell and setting

uk;l ¼
�1; k ¼ ð1 6 m 6 s; 1Þ and l ¼ k � ny

1; otherwise:

�
ð29Þ

Assuming M P N , vortex separations of s < M=2 can be studied. Fig. 4 illustrates the unit
cell and the resulting vortex configuration. Since we are working on an infinite plane, ide-
ally one would like to use a unit cell of infinite size in order to isolate the interaction be-
tween the vortices. However, the Hamiltonian (12) grows polynomially in M and N and
hence we restrict to considering a (20,20)-unit cell. This choice allows separations s 6 9,
which is shown later to be sufficient to extract the expected asymptotic behavior when
s!1. The resulting Hamiltonians are sparse 800	 800 matrices, which can not be trea-
ted analytically, but can be diagonalized numerically in a reasonable time using a tabletop
computer. Using (20) and (21) we can then calculate the total ground state energies Es

2v and
fermion gaps Ds

2v corresponding to 2-vortex configurations with vortex separation s.

4. Analysis of the spectrum

The spectrum of Hamiltonian (1) can be characterized by two different types of energy
gaps: fermionic gaps that characterize the energy levels of the spectrum above a fixed vor-



2296 V. Lahtinen et al. / Annals of Physics 323 (2008) 2286–2310
tex configuration and vortex gaps that compare the ground state energies corresponding to
different vortex configurations. We determine how the presence of vortices influences the
fermionic gaps and, subsequently, how the phase space geometry is modified. We also
determine the scaling of the ground state degeneracy, which is expected due to the presence
of the Ising non-abelian vortices. Moreover, we carry out a study on the 2-vortex config-
uration energies as a function of the vortex separation, and subsequently determine the
vortex gap, i.e., the energy required to excite a pair of free vortices.
4.1. The fermion gap

4.1.1. The phase space geometry in the presence of vortices

First, we briefly review the phase space of the vortex-free sector, which was studied in
[10]. It was shown that the honeycomb lattice model exhibits four distinct phases Ax;Ay ;Az

and B for different values of the couplings J a such that the system is in the B-phase when
all the inequalities j J y j þ j J z j6j J x j, j J x j þ j J z j6j J y j and j J x j þ j J y j6j J z j are vio-
lated. The phase boundaries are given by the equalities and the phase Aa occurs when only
j Jb j þ j J c j6j J a j holds and the other two inequalities are violated. The Aa phases are
always gapped for Jb; J c 6¼ 0, K P 0 and the vortices behave as Z2 	 Z2 abelian anyons.
On the other hand, the B-phase is gapped only when K 6¼ 0 and only there the vortices
behave as non-abelian Ising anyons. The phase boundaries are the lines in the phase space
where the fermion gap vanishes. Here we restrict to studying the transition, i.e., the behav-
ior of the fermion gap between the A ¼ Az (abelian) and the B (non-abelian) phases. Fig. 5
illustrates the general phase space geometry where we have taken J x þ J y þ J z ¼ 1.
For convenience we normalize from now on the couplings such that J z ¼ 1 and
Jx ¼ J y ¼ J .

Fig. 6(a) and (b) show the vortex-free, (24), and full-vortex, (28), fermionic gaps
plotted as functions of J for different values of K. Let us first consider the K ¼ 0 case.
In the vortex-free configuration the gap vanishes at J ¼ 1=2, in agreement with [10]. In
Fig. 5. An illustration of the phase diagram with the four distinct phases Ax;Ay ;Az and B when J x þ Jy þ Jz ¼ 1.
We restrict to studying the transition only between A � Az and B phases and for convenience employ an
alternative normalization such that J ¼ J x ¼ J y and J z ¼ 1. The dashed line indicates the 0 6 J 6 1 part of the
phase space along which we study the system. For all vortex configurations at small K the phase boundary
between A and B phases falls into the shaded area in the inner triangle. The limiting phase boundaries are given
by the vortex-free ðJ ¼ 1=2Þ and full-vortex ðJ ¼ 1=

ffiffiffi
2
p
Þ configurations.
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Fig. 6. (a) The vortex-free, (24), and (b) the full-vortex, (28), configuration fermion gaps for different values of K.
In the vortex-free case the gap vanishes at J = 1/2 for all values of K. In the full-vortex case the gap vanishes at
J ¼ 1=

ffiffiffi
2
p

for K ¼ 0, but shifts to smaller J as K is increased.
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the full-vortex configuration the gap persists till J ¼ 1=
ffiffiffi
2
p

in line with the results
derived in [17]. There the phase boundary equalities for the full-vortex configuration
were derived to take the form j Jbj2þ j J cj2 ¼j J aj2. When K 6¼ 0, in both cases the fer-
mion gaps reappear and settle at a constant value once the system moves well into the
B phase. However, the dependence of the gap magnitude on K is clearly different for
the vortex-free and full-vortex configurations with the gap being much smaller in the
latter case. Also, Fig. 6(b) shows that at K = 1/5 the transition between the phases
is shifted away from J ¼ 1=

ffiffiffi
2
p

. This implies that the magnitude of K can also affect
the phase space geometry.

In the limiting cases we observe that the boundary between the two phases depends on
the underlying vortex configuration. To study how the fermionic energy gap interpolates
in between these two extreme cases, we consider the fermion gaps of various sparse vortex
configurations on small ðMN 6 12Þ unit cells. In all the cases the phase boundary falls into
the region 1=2 6 J 6 1=

ffiffiffi
2
p

when K ¼ 0. For very sparse configurations with low vortex
density such as the 2-vortex configuration created by (29), the boundary is located very
close to J ¼ 1=2, whereas for more homogeneously distributed configurations with larger
vortex density it tends towards J ¼ 1=

ffiffiffi
2
p

. However, when K > 0 the phase boundary is in
general shifted to larger J’s such that for some configurations the boundary is located in
the area J > 1=

ffiffiffi
2
p

. We attribute the shifting of the phase boundary to short-range vortex–
vortex interactions, which are enhanced when K is increased. It is interesting to note that
since the vortex density affects the phase space geometry in the region 1=2 6 J 6 1=

ffiffiffi
2
p

and K P 0, it could, in principle, be used as a tunable parameter, that induces a phase
transition between the abelian and non-abelian phase.

4.2. The fermion gap in the presence of vortices

It is intriguing to study the behavior of the fermionic gap in the presence of only
two vortices as a function of their distance. For that we consider again the 2-vortex
configurations with varying vortex separation s, which are created by setting the u’s
as given by (29). Fig. 7(a) shows the behavior of the corresponding fermion gap D2v
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as the function of s in the abelian ðJ ¼ 1=3Þ and in the non-abelian ðJ ¼ 1Þ phase for
several values of K. The behavior in the different phases is radically different. In the
abelian phase the fermion gap is in practice insensitive to both s and K. In stark con-
trast to the abelian phase, the fermion gap in the non-abelian phase decreases exponen-
tially with s vanishing completely for s > 2.1 Indeed, in Fig. 7(b) we plot the gaps to
the two first excited states,

j 1i ¼ by1ðp0Þ j gsi; D2v ¼ min
p0

j �1ðpÞ j;

j 2i ¼ by2ðp0Þ j gsi; D2v;2 ¼ min
p0

j �2ðpÞ j;
ð30Þ

and observe that D2v tends exponentially to zero as s increases with the value at s ¼ 9 being
of order 10�7. This means that in the presence of two well separated vortices the ground
state of the non-abelian phase is twofold degenerate. Moreover, the gap to the second ex-
cited state, D2v;2, is found to be insensitive to s and persist to arbitrary separations.

It is known that the honeycomb lattice model can be mapped to a p-wave superconduc-
tor where the fermions live on the z-links [16,25]. The vortices in the superconductor are
assumed to be non-abelian Ising anyons [6], which are also predicted to appear as vortices
in the honeycomb lattice model [10]. In the presence of 2n well separated vortices the
ground state should be 2n-fold degenerate, but when vortices are brought together, their
interactions are predicted to lift the degeneracy [6,20,24]. Our demonstration of the two-
fold degenerate ground state in the presence of two vortices is in agreement with this pre-
diction. To verify that the degeneracy scales as 2n for the honeycomb lattice model, we
consider in addition 4- and 6-vortex pairwise configurations where the vortex pairs are
located on equally spaced rows of the (20, 20)-unit cell and the separation s of the vortices
from each pair is simultaneously varied. In the 4-vortex case the fermion gaps to the four
first excited states are given by
1 The oscillations of the energy gap as a function of the vortex separation appear to be Friedel oscillations.
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j 1i ¼ by1ðp0Þ j gsi; D4v ¼ min
p0

j �1ðpÞ j;

j 2i ¼ by2ðp0Þ j gsi; D4v;2 ¼ min
p0

j �2ðpÞ j;

j 3i ¼ by1ðp0Þb
y
2ðp0Þ j gsi; D4v;3 ¼ min

p0

j �1ðpÞ þ �2ðpÞ j;

j 4i ¼ by3ðp0Þ j gsi; D4v;4 ¼ min
p0

j �3ðpÞ j :

ð31Þ

Similarly, the gaps to the eight first excited states for the 6-vortex configuration are

j 1i ¼ by1ðp0Þ j gsi; D6v ¼ min
p0

j �1ðpÞ j;

j 2i ¼ by2ðp0Þ j gsi; D6v;2 ¼ min
p0

j �2ðpÞ j;

j 3i ¼ by3ðp0Þ j gsi; D6v;3 ¼ min
p0

j �3ðpÞ j;

j 4i ¼ by1ðp0Þb
y
2ðp0Þ j gsi; D6v;4 ¼ min

p0

j �1ðpÞ þ �2ðpÞ j;

j 5i ¼ by1ðp0Þb
y
3ðp0Þ j gsi; D6v;5 ¼ min

p0

j �1ðpÞ þ �3ðpÞ j;

j 6i ¼ by2ðp0Þb
y
3ðp0Þ j gsi; D6v;6 ¼ min

p0

j �2ðpÞ þ �3ðpÞ j;

j 7i ¼ by1ðp0Þb
y
2ðp0Þb

y
3ðp0Þ j gsi; D6v;7 ¼ min

p0

j �1ðpÞ þ �2ðpÞ þ �3ðpÞ j;

j 8i ¼ by4ðp0Þ j gsi; D6v;8 ¼ min
p0

j �4ðpÞ j :

ð32Þ

Fig. 8(a) and (b) depict the behavior of the 4- and 6-vortex configuration fermion gaps (31)
and (32), respectively, at J = 1 and K = 1/5 as a function of s. The degeneracy of the
ground state as s!1 is four for 4-vortex and eight for 6-vortex configurations. This is
exactly the predicted scaling. We also observe that at s < 2 the interaction does not com-
pletely lift the degeneracies. The ground state becomes non-degenerate for small s, but
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Fig. 8. The fermion gaps for some of the first excited states at J = 1 and K = 1/5 as a function of the vortex
separation s. (a) The fermion gaps (31) to the four first excited sates of the 4-vortex configuration. The first and
second excited states are degenerate. (b) The fermion gaps (32) of the eight first excited states for the 6-vortex
configuration. 1st, 2nd and 3rd as well as 4th, 5th and 6th excited states remain degenerate at small s.



2300 V. Lahtinen et al. / Annals of Physics 323 (2008) 2286–2310
some of the states form degenerate bands. The splitting in energy between the bands is
homogenous in the sense that for a specific s it costs the same amount of energy to move
between the shifted states. We also observe that for all the considered vortex configura-
tions the first non-vanishing gap as s!1 is always two units of energy above the ground
state. As can be seen from Fig. 6(a), this is the case also for the vortex-free fermion gap,
D0, at J = 1 and K = 1/5. The observation D0 ¼ D2v;2 ¼ D4v;4 ¼ D6v;8 suggests that the en-
ergy to excite a fermionic mode is insensitive to the underlying vortex configuration and
depends only on J and K. We will adopt D0 to denote the energy to create a free fermionic
excitation as opposed to an excited state at small s due to lifting of the ground state degen-
eracy.

4.2.1. Fermionic spectrum and the Ising anyon model

Our results concerning the spectrum can be interpreted in the context of Ising anyon
model, which is assumed to describe the low energy behavior of both the honeycomb lat-
tice model and the p-wave paired superconductors [6,10]. This model is spanned by three
types of quasiparticles or sectors: the vacuum 1, a fermion w and a non-abelian r. The
non-trivial fusion rules are given by

w	 w ¼ 1; w	 r ¼ r; r	 r ¼ 1þ w: ð33Þ
In the context of p-wave paired superconductors, 1 can be understood as the ground state
condensate of Cooper pairs, w as a Bogoliubov quasiparticle and r as a vortex [24]. In the
honeycomb lattice model we take analogously 1 to be the ground state, w to be a fermion
mode bi in the spectrum (18) and r to be a vortex living on a plaquette.

An established method to study p-wave superconductor vortices is in terms of massless
Majorana modes ci localized inside the vortex cores [6,21,23,24]. Two Majorana modes
can be combined to a fermion mode zi ¼ ðci þ iciþ1Þ=

ffiffiffi
2
p

, which is carried by a pair of vor-
tices located at i and iþ 1. Whether this mode is occupied or unoccupied corresponds to
the two possible fusion outcomes of the r vortices—unoccupied mode corresponds to fus-
ing to vacuum 1 whereas occupied mode means that the fusion will yield a w. Since the
occupation of these modes does not increase the energy of the system, they are known
as zero modes, which appear in the spectra of systems supporting Ising anyons. The exis-
tence of n zero modes in the spectrum implies 2n-fold degenerate ground state. However,
when the vortices are brought close to each other, the degeneracy should be lifted in a way
that allows the determination of the fusion outcome [2,6,20].

The observed degeneracy in the presence of well separated vortices in the honeycomb
lattice model (see Figs. 7 and 8(a), (b)) can be explained in terms of the ‘‘zero energy mod-
es” in the spectrum. These modes do not strictly speaking have zero energy, but corre-
spond instead to modes with the same finite energy as the ground state (20). When n of
these zero modes are present, we expect the diagonalized Hamiltonian (18) to be of the
form

H ¼MN
Z p=M

�p=M

dpx

2p

	
Z p=N

�p=N

dpy

2p

XMN

i¼nþ1

j �iðpÞ j byi biþ
Xn

i¼1

j as
i ðpÞ j z

y
i zi

"
�

XMN

i¼nþ1

j �iðpÞ j
2
þ
Xn

i¼1

j as
i ðpÞ j
2

 !#
:

ð34Þ



V. Lahtinen et al. / Annals of Physics 323 (2008) 2286–2310 2301
Here as
i ðpÞ are the n smallest eigenvalues that vanishes as the distance between the vortices

goes to infinity, i.e., lims!1minp j as
i ðpÞ j¼ 0. We allow as

i ðpÞ to be finite at small s to ac-
count for the lifting of the ground state degeneracy. This is exactly what we obtain in
the presence of vortices. Figs. 7(b) and 8(a), (b) show that for all s every occupied zero
mode contributes equally to the energy splitting, which suggests aiðpÞ ¼ aðpÞ; 8i. This is
reasonable, because occupied zero modes are interpreted as two r’s fusing to a w, and thus
every mode at every s should contribute an equal energy proportional to the energy of a w.

The splitting of the degenerate ground state in short ranges into degenerate bands
spanned by states with the number of occupied zero modes can be used to extract infor-
mation about how the vortices fuse. In particular, it is possible to identify the states with
different fusion channels. Consider for instance the 4-vortex configuration consisting of
two well separated pairs whose fermion gap behavior is shown in Fig. 8(b). The fusion
rules (33) give

r	 r	 r	 r ¼ 1þ 1þ wþ w;

which mean that the four vortices may fuse to both vacuum 1 and to w in two distinct
ways. These altogether four distinct fusion channels correspond to the fourfold degenerate
ground state at large s. At small s there are three bands of different energy. The ground
state corresponds to fusing both pairs into vacuum (no occupied zero modes),

ðr	 rÞ 	 ðr	 rÞ ! 1	 1 ¼ 1:

On the other hand, the non-degenerate band of two occupied zero modes corresponds also
to the vacuum sector, but now such that both pairs will separately fuse to a w,

ðr	 rÞ 	 ðr	 rÞ ! w	 w ¼ 1:

Even though this state belongs to the vacuum sector, they differ in energy because the two
pairs are well separated from each other. This contrasts with the twofold degenerate band,
which contains the states corresponding to the two fusion channels

ðr	 rÞ 	 ðr	 rÞ ! 1	 w ¼ w and ðr	 rÞ 	 ðr	 rÞ ! w	 1 ¼ w:

Both belong to the w sector, but there is no energy splitting indicating which pair will fuse
to w and which to 1. This is actually only a feature of our construction where the vortices
of the n pairs are always equidistantly separated by s plaquettes. As shown above, it is then
only possible to deduce the total topological sector of all the vortices, and some informa-
tion about the global fusion channel by distinguishing between these states. However, if
vortices from only one pair were brought close to each other, while the others were kept
well separated, the interaction induced gap would correspond to a splitting of only one
zero mode and the first excited state would be non-degenerate. Studying the splitting of
each mode separately allows unambiguous determination of the global fusion channel.

We also comment on the observation that the degree of degeneracy obtained here is 2n.
Usually one talks about creating vortices from vacuum, which means that the global sector
of the system is fixed to 1. The degeneracy corresponding to 2n vortices is then 2n�1,
because when all the vortices are fused, one must obtain again the vacuum. Our observa-
tion of 2n-fold degeneracy means that we do not create vortices out of vacuum by fixing
the u’s over the unit cell. The overall sector of 2n vortices may be either 1 or w, but we
have no prior information about it. This is reflected also on the identification of the fer-
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mion mode bi with a single w excitation. If the overall sector was fixed, the w’s should
always appear in pairs.
4.3. The vortex gap and the interaction energy

We have studied the fermionic spectrum above a fixed background vortex configura-
tion. Here we consider the energy spectrum of the vortices by studying how the ground
state energy depends on the number of vortices and their separation. A flux phase conjec-
ture proven by Lieb [22] states that in the absence of an external field the energy minimum
for honeycomb lattice is achieved with a vortex-free configuration. Even though we have
an external magnetic field in our model, we assume this still holds when K is small. Under
this assumption we define the vortex gap asymptotically by

DE2v ¼ lim
M ;N!1

EM=2
2v �MNE0

� �
; M P N ; ð35Þ

which gives the energy to create a pair of vortices and drag them infinitely far from each
other. Here E0 is the vortex-free ground state evaluated on a single plaquette (23) and Es

2v

denotes the total ground state energy of a vortex configuration on a ðM ;NÞ-unit cell con-
taining a pair of vortices separated by s plaquettes. The definition is given for a pair of
vortices due to the constraint (3) on the plaquette operators that demands vortices to come
in pairs. Including the interaction energy in the vortex gap definition means that (35) pro-
vides an estimate of the stability of the topological phase. To be precise, if the temperature
of the system is well below the vortex gap, T << DE2v, spontaneous creation of stray vor-
tex pairs will be exponentially suppressed.

To study how this definition applies to systems with periodic structure, we consider
again the (20, 20)-unit cell with a pair of vortices separated by s plaquettes (29). For a par-
ticular s, the vortex gap takes the form DEs ¼ Es

2v � 202E0, which is plotted in Fig. 9. The
abelian phase (Fig. 9(a)) shows a very weak attractive short-range interaction between vor-
tices, which is agreement with the high-order perturbation theory study of the abelian
phase [18]. In the non-abelian phase (Fig. 9(b)) we observe also an attractive interaction.
However, there the interaction is strong with the magnitude being sensitive to the value of
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K. When K ¼ 0 the vortex gap exhibits only low amplitude oscillatory behavior as a func-
tion of s void of interaction signature, but as K increases and the system enters the non-
abelian phase, the oscillatory behavior is suppressed and an attractive short-range interac-
tion emerges.2 In both phases the K-term increases the vortex energy, and in the non-abe-
lian phase it is necessary to switch on the interaction. Although the interaction is very
weak in the abelian phase, it exists even when K ¼ 0. We observe that the interaction
becomes negligible when s > 2, which is in accordance with the fermion gap behavior,
which was attributed also to the interactions (see Figs. 7(b) and 8(a), (b)).

Our definition contrasts with the vortex gap definition in [17], where it was defined as
the difference between the total ground state energies of the full-vortex (27) and vortex-free
(23) configurations. That definition neglected the interaction energy between vortices and
hence we regard our definition (35) to provide a more accurate estimate of the energy
required to excite the system. It should be emphasized that even though we observe a
strong attractive interaction between vortices, the plaquette operators (3) are constants
of motion of the Hamiltonian (1) and thus the vortices close to each other are not pulled
together and annihilated spontaneously. This is not the case if the K-term was replaced by
a Zeeman term. Then the vortices could hop and be annihilated if they do not have suf-
ficient energy to overcome the attractive interaction. Therefore, we regard our asymptotic
definition of the vortex gap (35) to provide a realistic way of estimating the stability of the
topological phase also in the presence of an external magnetic field.
4.4. The low-energy spectrum of the non-abelian phase

Combining the studies on both the fermion and vortex gaps allows us to outline the
low-energy spectrum of the non-abelian phase. In Fig. 10 we plot some of the first excited
fermionic states above the vortex-free, the 2-vortex and 4-vortex configurations as a func-
tion of the vortex separation s. All the energies are depicted with respect to the total
ground state energy E0 of the vortex-free sector. The vortex-free sector is trivially insensi-
tive to s and the corresponding low-energy spectrum is characterized by the fermion gap
2 Like in Fig. 7(a), the physicality of the oscillatory behavior for small K is unclear to us.
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D0 alone. In terms of the Ising anyon model these fermionic levels were identified with w
excitations. The 2- and 4-vortex sector ground states are separated from the vortex-free
ground state by DEs and 2DEs, respectively, when the two pairs are well separated. At large
s the first excited state above both of these configurations is given by the fermion gap to
excite a free w. Since this energy is constant on all vortex-configurations, these levels are
located at DEs þ D0 and 2DEs þ D0. As D0 > DEs the low energy behavior consists only of
vortices. Since the energy gap D0 to excite a w does not depend on the underlying vortex
configuration, this observation generalizes to any configuration where the vortices are kept
well separated.

This simple spectral behavior is lost when the vortices are near each other. There the
energy levels are shifted and the degeneracies are partially lifted. The smallest separation
we can consider is s ¼ 0, which corresponds to the vortices occupying neighboring pla-
quettes. However, when the vortices were superposed, they would fuse to the vacuum
or to a fermion according to the fusion rules (33), and the spectrum would correspond
to the purely fermionic spectrum of the vortex-free sector. This can be connected to the
lifting of the degeneracies at small s due to different number of occupied zero modes,
i.e., different amount of w’s in the fusion channels. We observe that at s ¼ 0 the ground
states of both 2- and 4-vortex sectors (no occupied zero modes) tend towards the vor-
tex-free ground state, whereas all the states with occupied zero modes tend to higher ener-
gies which correspond to fermionic excitations. This is in agreement with the predictions of
the Ising anyon model.

5. Numerical experiments on finite toroidal lattices

In this section we present results of a numerical study of different finite size configurations.
While the physics of these compactified systems is often complicated due to finite size effects,
they can be used to directly compare numerical and analytical data. After a brief introduction
into the methodology used in the numerical calculations, we present a comparison of numer-
ical and analytical data and we show that they are in exact agreement, validating the pre-
sented theory. We continue with a more general numerical examination of finite toroidal
systems. These studies go beyond the currently available analytical results and illustrate
the non-trivial dependence of the low-energy spectrum on the K-term.

5.1. Systems of interest

Our numerical experiments focus on calculating the low-energy spectral properties of
finite-size honeycomb lattice systems with the Hamiltonian given by (1). We use a variety
of toroidal systems which differ by the total number of spins and by lattice compactifica-
tion. The size of the system varies from N = 8 spins, which constitute an elementary unit of
the model that can be compactified on a torus, to N = 24 spins. Though small scale
(N < 18) computations require modest computing resources and are conveniently carried
out using high level languages (e.g., Matlab), the dimensionality of the lattice Hilbert space
scales exponentially with the number of spins (e.g., for 24 spins, the dimensionality of the
Hilbert space is 224 � 1:6	 107) and thus requires optimized parallel processing which will
be discussed further below. In most cases the complexity of the computation can be
reduced by taking into account the intrinsic symmetries of the model. These symmetries
will be discussed in detail elsewhere [26]. We use two physically inequivalent types of finite
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lattice compactifications on a torus which we call ‘diamond’, (see Fig. 11(a) and (b)) and
‘rectangular’, (see Fig. 11(c)–(e)). It can be easily seen that some non-trivial closed loops
constructed within one compactification type correspond to open strings in the other type
of the same size (for example the cases (a) and (c) in Fig. 11).
5.2. Methodology

Our numerical methodology consists of three main components: generation of the
Hamiltonian (1) and the plaquette operators ŵp (3), their diagonalization and the analysis
of the obtained eigenstates j ni and the eigenvalues En.

For spin systems with ðN P 18Þ we distribute the matrices over a number of different
processors using the PETSc library [27–29]. The matrix loading routine requires the user
to calculate the position and value of the non-zero elements of a particular row of the
matrix under consideration. Using this method we can easily store matrices of dimension
224. For basic linear algebra routines we use the Linear Algebra Wrapper (LAW) library
[30]. For the numerical diagonalization of these matrices that are distributed across multi-
ple processors we use the SLEPc library [31] which is built upon PETSc. The software con-
tains a number of exact diagonalization routines including the ARPACK Arnoldi library
[32,33] and an optimized implementation of Krylov-Shur algorithm [34,35]. Using Krylov-
Shur, and with the matrix distributed across 64 processing nodes, SLEPc returns the low-
est 10 energy eigensolutions of the full 24-spin system in under one hour.

The aim of the numerical analysis is to classify the energy eigenvectors j ni according to
their vortex configuration. Since all plaquettes commute with the Hamiltonian all energy
eigenvectors j ni must satisfy wp ¼ hn j ŵp j ni ¼ �1 for all N=2 plaquettes on a torus.
However, the relation

Q
pŵ ¼ I in (3) implies that there are only N=2� 1 independent

quantum numbers, fw1; . . . ;wN=2�1g, for each vortex configuration sector. Therefore, in
order to reduce the Hilbert space to particular vortex configuration, one must only impose
N=2� 1 constraints. Since the imposition of each constraint reduces the dimension of the
Hilbert space by a factor of 2 we see that there are only 2N=2�1 unique vortex configuration
sectors, each with a Hilbert space dimension of 2N=2þ1.

In what follows we are only concerned with classifying the sectors according to the total
number of vortices. For that we define the vortex counting operator

v̂ � 1

4
NbI � 2

X
p

ŵp

 !
: ð36Þ
a b c d e

Fig. 11. Toroidal lattices used in numerical study. The diamond lattices (a) and (b), are symmetric with respect to
exchange of x, y and z links. The rectangular lattices, (c), (d) and (e) are symmetric with respect to x and y-links
only.
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The number of vortices corresponding to the eigenstate j ni is given by the expectation va-
lue hn j v̂ j ni.
5.3. Comparison of numerical and analytical data

In this section we compare results obtained from exact numerical diagonalization with
the solutions obtained by the method of Majorana fermionization outlined in Section 2.2.
For the purpose of this comparison we analyze the N = 8 spin diamond system (see
Fig. 11(a)), which corresponds to the (2, 2)-unit cell when we employ the Majorana fermi-
onization. Placing this unit cell on a torus implies that all the couplings in the Hamiltonian
(7) are now between sites belonging to the unit cell. In terms of the elements (13)–(16) of
the matrix Akkll this means setting vx ¼ vy ¼ 0 everywhere.

The (2, 2)-unit cell contains 12 links on which one must specify the values of the u’s.
This implies that there are altogether 212 ¼ 4096 distinct ways to create vortex configura-
tions. However, due to finite size effects there is no a priori way to tell which configuration
of the u’s will correspond to the lowest ground state energy E0. We carry out a systematic
investigation by diagonalizing the resulting 8	 8 Hamiltonian for all the u configurations
and find that there are in total 512, 3072 and 512 ways to create 0-vortex, 2-vortex and 4-
vortex configurations, respectively. The lowest energy is found to correspond to the 4-vor-
tex configuration and the first excited states to vortex-free configurations.

Using direct numerical diagonalization we find a ground state, which corresponds also
to a 4-vortex configuration. In Fig. 12 we plot some of the lowest lying excited states for
(a) K ¼ 0 and (b) J = 1 and K P 0. The values agree with the analytical data to 14 decimal
places. In addition, we observe using both numerical and analytic approach the level cross-
ing due to the K-term between 0-vortex and 4-vortex sectors (see Fig. 12(b)), as well as that
at J = 1 the vortex-free ground state is threefold degenerate.
5.4. Numerical study of the K-term

In this section we numerically calculate the effect of the K-term on the energy spectrum
of the non-abelian B phase for three different finite size lattices. Analysis of the spectrum in
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Fig. 12. Some of the lowest lying energy eigenvalues for the 8-spin diamond system (see Fig. 11(a)). (a) K = 0, (b)
J = 1 and K P 0.
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all cases shows that the K-term is capable of inducing level crossings between eigenvectors
from the same vortex configuration sector. This observation means that the K-term is, in
the language of Section 2.2, capable of opening and closing of fermionic gaps.

We first consider the 16-spin rectangular lattice shown in Fig. 11(d). The system is sym-
metric only with respect to reflection in the vertical (z-link) axis. At J = 1, K = 0 the
ground state is four times degenerate, containing single 0- and 8-vortex states and two
4-vortex states. The two 4-vortex states are related by a lattice translation. In Fig. 13(a)
we plot how the addition of the K-term affects the low-energy spectrum. We observe a lift-
ing of the ground state degeneracy, but the 4-vortex states remain still degenerate. We
observe also that the K-term can induce spectral crossings between states from the same
vortex configuration as seen in the double crossing of the 0-vortex ground states between
K � 0:22 and K � 0:32.

In Fig. 13(b) we consider the spectrum of 18-spin diamond lattice shown in Fig. 11(b).
It is symmetric with respect to exchange of all x, y or z links and it contains an odd number
of plaquettes. At the exact center of the B phase (J = 1) the ground state contains three
degenerate states belonging to the 0-vortex sector. We observe that the K-term does not
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Fig. 13. Some of the lowest lying energy eigenvalues E above the ground state E0 for 16, 18 and 24-spin lattices at
J = 1 and K P 0. (a) Spectrum of the 16 spin rectangular lattice of Fig. 11(d). (b) Spectrum of the 18 spin
diamond lattice of Fig. 11(b). (c) Spectrum of the 24 spin rectangular lattice shown in Fig. 11(e).
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lift the ground state degeneracy. This is to be expected as the K-term is also symmetric with
respect to exchange of x, y or z links. However, in general the K-term does affect the rel-
ative energy levels of non-degenerate states of the same vortex sector. This can be seen as
the level crossings of the excited states.

Finally, we investigate the 24-spin rectangular lattice shown in Fig. 11(e). We see that
the lowest three states are non-degenerate and belong to the 0-vortex sector. Again we
observe the non-trivial behavior of the spectrum as the function of K. Fig. 13(c) shows that
the as K increases the gap between ground state and first excited state closes and a level
crossing occurs at K � 0:11.

6. Conclusions

We have presented an extensive analysis of the spectrum in Kitaev’s honeycomb lattice
model [10] with the focus on the properties of the non-abelian regime. Due to the exact
solvability of the model we were able to analytically determine, qualitatively as well as
quantitatively, the spectral behavior in the presence of vortices in the thermodynamic
limit. This behavior was subsequently identified with the qualitative predictions derived
in the context of a p-wave superconductor, a model to which the honeycomb lattice model
is known to be equivalent [16,25]. The validity of our results is supported by exact numer-
ical diagonalizations of various finite size lattice Hamiltonians. There is an exact agree-
ment with the results obtained through the analytical methods. This is a strong
validation of the employed analytical techniques and of the conclusions drawn from them.

To be precise, our study allowed us to directly compare the spectral behavior in the abe-
lian and in the non-abelian phases and extract characteristics that are unique to the non-
abelian phase. The crucial difference is the ground state degeneracy in the non-abelian
phase in the presence of well separated vortices. We explain this in terms of zero modes
in the spectrum and provide a direct verification that the number of zero modes present
in a system with 2n vortices is n [21,23,24]. The resulting 2n-fold degeneracy of the ground
state is in agreement with the non-abelian character of the Ising non-abelian anyons. Fur-
thermore, we observe directly the lifting of the ground state degeneracy when the vortices
are brought close to each other and explain the lifting in terms of the fusion rules of the
Ising vortices. The energy splitting at short ranges could in principle be used to distinguish
the different possible fusion channels without the need to employ an interference proce-
dure. Also, the fact that the information about the fusion outcome is a non-local property
of the vortex pair is explicitly demonstrated as the degeneracy present at large s.

Moreover, we have demonstrated that the phase boundary between the abelian and
non-abelian phase depends on the underlying vortex configuration and that vortices are
interacting in both phases. This attractive interaction is strong in the non-abelian and
weak in the abelian phase. Also, the energy gap to excite a pair of vortices is considerably
larger in the non-abelian phase. Another characteristic of the non-abelian phase is that the
fermionic gap to excite free fermions, D0, does not depend on the underlying vortex con-
figuration as long as the vortices are kept well separated. This means that all the sectors of
the non-abelian phase are equally stable with respect to fermionic excitations. Based on
this we defined the vortex gap, DE2v, in an asymptotic fashion. This gap provides a stability
criterion for a particular sector. The combination of all these observations allowed us to
outline the low-energy spectrum of the non-abelian phase for configurations where the
vortices are both well separated and close to each other. We observe that at large separa-
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tions the spectral behavior consists only of vortices, which is in agreement with the predic-
tion that the low energy behavior should be fully captured by the Ising anyon model.
Understanding in detail the behavior of the energy spectrum is of importance to the pro-
posed implementations of this model in the laboratory [19]. Our observation of the phase
boundary dependence on the vortex density for particular values of J a and K could be of
interest to these proposals. In particular, if an increase in temperature is accompanied by
an increase in the number of vortices, then it would induce a transition from the non-abe-
lian to the abelian phase.

Finally, we have presented a numerical study of the effect of the K-term on the spectra
of various finite size systems. These systems are too small to observe behavior similar to
the thermodynamic limit, but one important qualitative similarity exists. We observe that
the K-term is capable of inducing level crossings of states belonging to the same vortex sec-
tor. This is the finite size equivalent to the opening and closing of fermionic gaps. A more
detailed study on these finite size effects will be presented elsewhere [26].
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