158 research outputs found

    Atypical development of the executive attention network in children with chromosome 22q11.2 deletion syndrome

    Get PDF
    Impairment in the executive control of attention has been found in youth with chromosome 22q11.2 deletion syndrome (22q11.2DS). However, how this impairment is modified by other factors, particularly age, is unknown. Forty-six typically developing and 53 children with 22q11.2DS were tested with the attention networks task (ANT) in this cross-sectional study. We used logarithmic transform and linear modeling to assess age effects on the executive index of the ANT. Mixed modeling accounted for between subject variability, age, handedness, catecholamine-O-transferase (COMT; codon 158) genotype, and gender on performance for all experimental conditions (cue × flanker) and their two-level interactions. Children with 22q11.2DS showed a relative, age-dependent executive index impairment but not orienting or alerting network index impairments. In factorial analysis, age was a major predictor of overall performance. There was a significant effect of the 22q11.2DS on overall performance. Of note, children with 22q11.2DS are specifically vulnerable to incongruent flanker interference, especially at younger ages. We did not find an overall effect of COMT genotype or handedness. Children with 22q11.2DS demonstrated age-related impairment in the executive control of attention. Future investigation will likely reveal that there are different developmental trajectories of executive attentional function likely related to the development of schizophrenia in 22q11.2DS

    Gifted children with ADHD: how are they different from non-gifted children with ADHD?

    Get PDF
    The present study focused on inattention and hyperactivity/impulsivity differences of gifted children with and without attention deficit-hyperactivity disorder (ADHD). Based on clinical assessment utilizing the Anxiety Disorders Interview Schedule for Children (ADISC-IV) and the Wechsler Intelligence Scale for Childrenβ€”Fourth Edition, attendees of a public outpatient child service (boys = 359, girls = 148), with mean age 10.60 years (SD = 3.08 years), were allocated into four groups: ADHD (N = 350), gifted (N = 15), gifted/ADHD (N = 18), and clinical controls (N = 124). The Strengths and Weaknesses of ADHD-Symptoms and Normal Behavior Scale dimensionally assessed inattention and hyperactivity/impulsivity variations. Compared to the gifted/ADHD group, the ADHD group had higher scores for inattention and comparable scores for hyperactivity/impulsivity. For most symptoms, the ADHD groups (gifted or not) rated higher than the non-ADHD groups (control and gifted without ADHD). Findings appeared to indicate that (i) ADHD is a valid diagnosis among children who are gifted, (ii) gifted children might tend to be less inattentive than non-gifted ADHD children, and (iii) ADHD-gifted children appear to differ from the non-ADHD-gifted children with regard to specific hyperactive and impulsive behaviors. The practical implication of these findings is that clinicians may wish to focus on these symptoms when diagnosing ADHD among children with high intelligence

    ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study

    Get PDF
    Electroencephalography (EEG)-neurofeedback has been shown to offer therapeutic benefits to patients with attention-deficit/hyperactivity disorder (ADHD) in several, mostly uncontrolled studies. This pilot study is designed to test the feasibility and safety of using a double-blind placebo feedback-controlled design and to explore the initial efficacy of individualized EEG-neurofeedback training in children with ADHD. Fourteen children (8–15Β years) with ADHD defined according to the DSM-IV-TR criteria were randomly allocated to 30 sessions of EEG-neurofeedback (nΒ =Β 8) or placebo feedback (nΒ =Β 6). Safety measures (adverse events and sleep problems), ADHD symptoms and global improvement were monitored. With respect to feasibility, all children completed the study and attended all study visits and training sessions. No significant adverse effects or sleep problems were reported. Regarding the expectancy, 75% of children and their parent(s) in the active neurofeedback group and 50% of children and their parent(s) in the placebo feedback group thought they received placebo feedback training. Analyses revealed significant improvements of ADHD symptoms over time, but changes were similar for both groups. This pilot study shows that it is feasible to conduct a rigorous placebo-controlled trial to investigate the efficacy of neurofeedback training in children with ADHD. However, a double-blind design may not be feasible since using automatic adjusted reward thresholds may not work as effective as manually adjusted reward thresholds. Additionally, implementation of active learning strategies may be an important factor for the efficacy of EEG-neurofeedback training. Based on the results of this pilot study, changes are made in the design of the ongoing study

    Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome 22q11 deletion syndrome (22q11DS) causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions.</p> <p>Methods</p> <p>We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH), quantitative real-time polymerase chain reaction (qPCR) and multiplex ligation-dependent probe amplification (MLPA).</p> <p>Results</p> <p>Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (<it>p </it>< 0.01). An identical deletion was shown in three affected infants by MLPA. These reduced DNA dosages were also obtained partially using array-CGH and confirmed by qPCR but with some differences in deletion size.</p> <p>Conclusion</p> <p>Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes.</p

    Genetic Epidemiology of Attention Deficit Hyperactivity Disorder (ADHD Index) in Adults

    Get PDF
    Context: In contrast to the large number of studies in children, there is little information on the contribution of genetic factors to Attention Deficit Hyperactivity Disorder (ADHD) in adults. Objective: To estimate the heritability of ADHD in adults as assessed by the ADHD index scored from the CAARS (Conners’ Adult ADHD Rating Scales). Design: Phenotype data from over 12,000 adults (twins, siblings and parents) registered with the Netherlands Twin Register were analyzed using genetic structural equation modeling. Main outcome measures: Heritability estimates for ADHD from the twin-family study. Results: Heritability of ADHD in adults is estimated around 30 % in men and women. There is some evidence for assortative mating. All familial transmission is explained by genetic inheritance, there is no support for the hypothesis that cultural transmission from parents to offspring is important. Conclusion: Heritability for ADHD features in adults is present, but is substantially lower than it is in children

    Advances in understanding and treating ADHD

    Get PDF
    Attention deficit hyperactivity disorder (ADHD) is a neurocognitive behavioral developmental disorder most commonly seen in childhood and adolescence, which often extends to the adult years. Relative to a decade ago, there has been extensive research into understanding the factors underlying ADHD, leading to far more treatment options available for both adolescents and adults with this disorder. Novel stimulant formulations have made it possible to tailor treatment to the duration of efficacy required by patients, and to help mitigate the potential for abuse, misuse and diversion. Several new non-stimulant options have also emerged in the past few years. Among these, cognitive behavioral interventions have proven popular in the treatment of adult ADHD, especially within the adult population who cannot or will not use medications, along with the many medication-treated patients who continue to show residual disability

    Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement

    Get PDF
    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)β€”the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
    • …
    corecore