5,015 research outputs found

    Rates for the reactions antiproton-proton --> pi phi and gamma phi

    Full text link
    We study antiproton-proton annihilation at rest into πϕ\pi\phi and γϕ\gamma\phi. Rescattering by KK+KK\overline{K^*}K+K^*\overline{K} and ρ+ρ\rho^{+}\rho^{-} for ppπϕ\overline{p}p\rightarrow\pi\phi states is sizable, of order (0.90to2.6)×104(0.90\, {\rm to}\,2.6)\times 10^{-4} in the branching ratio, but smaller than experiment. For ppγϕ\overline{p}p\rightarrow\gamma\phi the rescattering contributions are negligible, but the γϕ\gamma\phi channel is well explained by a ρϕ\rho\phi intermediate state combined with vector meson dominance.Comment: 12 pages, plain latex, 2 postscript figures available upon request, PSI-PR-93-2

    Luminescence quenching of the triplet excimer state by air traces in gaseous argon

    Full text link
    While developing a liquid argon detector for dark matter searches we investigate the influence of air contamination on the VUV scintillation yield in gaseous argon at atmospheric pressure. We determine with a radioactive alpha-source the photon yield for various partial air pressures and different reflectors and wavelength shifters. We find for the fast scintillation component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity. However, the decay time of the slow component depends on gas purity and is a good indicator for the total VUV light yield. This dependence is attributed to impurities destroying the long-lived argon excimer states. The population ratio between the slowly and the fast decaying excimer states is determined for alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature. The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec at a partial air pressure of 2 x 10-6 mbar.Comment: 7 pages submitted to NIM

    Numerical Evidence for the Observation of a Scalar Glueball

    Get PDF
    We compute from lattice QCD in the valence (quenched) approximation the partial decay widths of the lightest scalar glueball to pairs of pseudoscalar quark-antiquark states. These predictions and values obtained earlier for the scalar glueball's mass are in good agreement with the observed properties of fJ(1710)f_J(1710) and inconsistent with all other observed meson resonances.Comment: 12 pages of Latex, 3 PostsScript figures as separate uufil

    Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU)

    Get PDF
    We use a graphics processing unit (GPU) for fast calculations of helicity amplitudes of quark and gluon scattering processes in massless QCD. New HEGET ({\bf H}ELAS {\bf E}valuation with {\bf G}PU {\bf E}nhanced {\bf T}echnology) codes for gluon self-interactions are introduced, and a C++ program to convert the MadGraph generated FORTRAN codes into HEGET codes in CUDA (a C-platform for general purpose computing on GPU) is created. Because of the proliferation of the number of Feynman diagrams and the number of independent color amplitudes, the maximum number of final state jets we can evaluate on a GPU is limited to 4 for pure gluon processes (gg4ggg\to 4g), or 5 for processes with one or more quark lines such as qqˉ5gq\bar{q}\to 5g and qqqq+3gqq\to qq+3g. Compared with the usual CPU-based programs, we obtain 60-100 times better performance on the GPU, except for 5-jet production processes and the gg4ggg\to 4g processes for which the GPU gain over the CPU is about 20

    Tests of silicon sensors for the CMS pixel detector

    Full text link
    The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.Comment: Talk presented at 6th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, September 29-October 1, 2003, Firenze, Italy. Proceedings will be published in Nuclear Instr. & Methods in Phys. Research, Section

    Spin-Parity Analysis of the Centrally produced KsKs system at 800 GeV

    Get PDF
    Results are presented of the spin-parity analysis on a sample of centrally produced mesons in the reaction (p p -> p_{slow} K_s K_s p_{fast}) with 800 GeV protons on liquid hydrogen. The spin-parity analysis in the mass region between threshold and 1.58 GeV/c^2 shows that the (K_s K_s) system is produced mainly in S-wave. The f_0(1500) is clearly observed in this region. Above 1.58 GeV/c^2 two solutions are possible, one with mainly S-wave and another with mainly D-wave. This ambiguity prevents a unique determination of the spin of the f_J(1710) meson.Comment: 6 pages, including 6 figures. LaTex, uses 'espcrc2.sty'. To appear in LEAP'96 proceeding

    Glueball calculations in large-N_c gauge theory

    Get PDF
    We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.Comment: 4 pages, 2 figures, uses macro boxedeps.tex, minor corrections in revised versio

    Heavy χQ2\chi_{Q_2} tensor mesons in QCD

    Get PDF
    The masses and decay constants of the ground state heavy χQ2(Q=b,c)\chi_{Q2}(Q=b,c) tensor mesons are calculated in the framework of the QCD sum rules approach. The obtained results on the masses are in good consistency with the experimental values. Our predictions on the decay constants can be verified in the future experiments.Comment: 7 Pages and one Tabl

    The Argon Dark Matter Experiment (ArDM)

    Full text link
    The ArDM experiment, a 1 ton liquid argon TPC/Calorimeter, is designed for the detection of dark matter particles which can scatter off the spinless argon nuclei. These events producing a recoiling nucleus will be discerned by their light to charge ratio, as well as the time structure of the scintillation light. The experiment is presently under construction and will be commissioned on surface at CERN. Here we describe the detector concept and give a short review on the main detector components.Comment: Proceedings of 4th Patras workshop (DESY) on Axions, Wimps and Wisps (4 pages, 4 figures

    Heavy-quark Langevin dynamics and single-electron spectra in nucleus-nucleus collision

    Full text link
    The stochastic dynamics of heavy quarks in the fireball produced in heavy-ion collisions is followed through numerical simulations based on the Langevin equation. The modification of the final p_T spectra (R_AA) of c and b quarks, hadrons and single-electrons with respect to pp collisions is studied. The transport coefficients are evaluated treating separately the contribution of soft and hard collisions. The initial heavy-quark spectra are generated according to NLO-pQCD, accounting for nuclear effects through recent nPDFs. The evolution of the medium is obtained from the output of two hydro-codes (ideal and viscous). The heavy-quark fragmentation into hadrons and their final semileptonic decays are implemented according to up to date experimental data. A comparison with RHIC data for non-photonic electron spectra is given.Comment: 4 pages, 3 figures, Talk given at "Hot Quarks 2010", 21th-26th June 201
    corecore