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The masses and decay constants of the ground state heavy χQ 2 (Q = b, c) tensor mesons are calculated
in the framework of the QCD sum rules approach. The obtained results on the masses are in good
consistency with the experimental values. Our predictions on the decay constants can be verified in
the future experiments.
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1. Introduction

During last few years very exiting experimental results are ob-
tained in the charm and beauty meson and baryon spectroscopies
[1]. Recent CLEO measurements on the two-photon decay rates of
the even-parity, scalar 0++ , χb(c)0 and tensor 2++ , χb(c)2 states
([1,2] and references therein) were motivation to investigate the
properties of these mesons and their radiative decays.

In the present work, we calculate the mass and decay constants
of the ground state heavy bottomonium, χb2(1P ) and charmonium,
χc2(1P ) tensor mesons with IG( J P C ) = 0+(2++) in the framework
of the QCD sum rules approach. QCD sum rules approach as a
non-perturbative approach is one of the most powerful and ap-
plicable tools to hadron physics and can play an important role
in calculation of the characteristic parameters of the hadrons (for
details about this method and some applications see [3,4]). Note
that the mass and decay constant of the strange tensor K ∗

2 (1430)

with quantum numbers I( J P ) = 1/2(2+) have been calculated in
[5] in the same framework. These parameters for light unflavored
tensor mesons have also been calculated in [6]. The obtained re-
sults for the masses and decay constants are used in calculation of
the magnetic dipole moments of the light tensor mesons using the
QCD sum rules method in [7].

The Letter is organized as follows: in next section, sum rules for
the mass and decay constant of the ground state heavy quarkonia,
χQ 2 tensor mesons are derived in the context of the QCD sum
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rules method. Section 3 is devoted to the numerical analysis of
the mass and decay constants as well as the comparison of the
obtained results on the mass with the experimental values.

2. Theoretical framework

In this section, we obtain the sum rules for the mass and decay
constant of the heavy χQ 2(1P ) tensor meson in the framework of
the QCD sum rules approach. For this aim we consider the follow-
ing correlation function

Πμν,αβ = i

∫
d4x eiq(x−y)〈0|T

[
jμν(x) j̄αβ(y)

]|0〉, (1)

where, jμν is the interpolating current of the χQ 2(1P ) tensor me-
son and T is the time ordering operator. The explicit form of the
current jμν creating the ground state heavy tensor χQ 2(1P ) state
with quantum numbers IG( J P C ) = 0+(2++) from the vacuum can
be written in the following form:

jμν(x) = i

2

[
Q̄ (x)γμ

↔
Dν(x)Q (x) + Q̄ (x)γν

↔
Dμ(x)Q (x)

]
, (2)

where Q stands for heavy b or c quark and the
↔

Dμ(x) represents
the derivative with respect to four-x acting on left and right, si-
multaneously. This two-side covariant derivative is defined as:

↔
Dμ(x) = 1

2

[ →
Dμ(x) − ←

Dμ(x)
]
, (3)

where,
→

Dμ(x) = →
∂μ(x) − i

g

2
λa Aa

μ(x),

←
Dμ(x) = ←

∂μ(x) + i
g
λa Aa

μ(x). (4)

2
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In the above relations, the λa are the Gell-Mann matrices and
Aa

μ(x) are the external (vacuum) gluon fields, which can be ex-
pressed directly in terms of the gluon field strength tensor using
the Fock–Schwinger gauge, xμ Aa

μ(x) = 0, as the following way:

Aa
μ(x) =

1∫
0

dααxβ Ga
βμ(αx)

= 1

2
xβ Ga

βμ(0) + 1

3
xηxβ DηGa

βμ(0) + · · · . (5)

Since the current contains derivatives with respect to the space–
time so we will consider the two currents at points x and y. After
doing calculations and applying the derivatives, we will set y = 0.

It is well known that in the QCD sum rules approach, the cor-
relation function in Eq. (1) is calculated in two different ways. The
physical or phenomenological part, which is obtained in terms of
the hadronic parameters such as mass and decay constant inserting
a complete set of the states owing the same quantum numbers as
the interpolating current jμν . The theoretical or QCD part, which is
calculated in terms of the QCD parameters such as quark masses,
quark condensates and quark–gluon coupling constants, etc. The
correlation function in this part is calculated in deep Euclidean
region, q2 � 0, via operator product expansion (OPE). The short
distance effects are calculated via the perturbation theory, whereas
the long distance contributions, which are non-perturbative ef-
fects are parameterized in terms of the quark–quark, gluon–gluon
and quark–gluon condensates. The sum rules for the observables
(masses and decay constants) of the ground state χQ 2(1P ) meson
are obtained equating both representations of the correlation func-
tion, isolating the ground state and applying Borel transformation
to suppress the contribution of the higher states and continuum
through the dispersion relation.

To proceed first we calculate the phenomenological part. Insert-
ing a complete set of intermediate state, χQ 2(1P ) to time ordering
product in Eq. (1), and performing integral over x we get:

Πμν,αβ = 〈0| jμν(0)|χQ 2〉〈χQ 2| jαβ(0)|0〉
m2

χQ 2
− q2

+ · · · , (6)

where · · · denotes the contribution of the higher states and con-
tinuum. From the above relation, it is clear that we need to know
the matrix element, 〈0| jμν(0)|χQ 2〉, which can be parameterized
in terms of the decay constant, fχQ 2 :

〈0| jμν(0)|χQ 2〉 = fχQ 2m3
χQ 2

εμν, (7)

where εμν is the polarization tensor of χQ 2 meson. Using Eq. (7)
in Eq. (6), we obtain the following final representation of the cor-
relation function in phenomenological side:

Πμν,αβ = f 2
χQ 2

m6
χQ 2

m2
χQ 2

− q2

{
1

2
(gμα gνβ + gμβ gνα)

}

+ other structures + · · · , (8)

where, the only structure which contains a contribution of the
tensor meson has been kept. In calculations, we have performed
summation over the polarization tensor using

εμνε
∗
αβ = 1

2
TμαTνβ + 1

2
Tμβ Tνα − 1

3
Tμν Tαβ, (9)

where,

Tμν = −gμν + qμqν

m2
. (10)
χQ 2
The next step is to calculate the theoretical or QCD side of the
correlation function in deep Euclidean region, q2 � 0. Using the
explicit expression for the tensor current presented in Eq. (2) in-
side the correlation function shown in Eq. (1) and contracting out
all quark pairs using the Wick’s theorem, we obtain the following
expression for the QCD side:

Πμν,αβ = i

4

∫
d4x eiq(x−y)

× {
Tr

[
S Q (y − x)γμ

↔
Dν(x)

↔
Dβ(y)S Q (x − y)γα

]
+ [β ↔ α] + [ν ↔ μ] + [β ↔ α,ν ↔ μ]}. (11)

To proceed we need to know the heavy quark propagator, S Q (x −
y). This propagator has been calculated in [8]:

S Q (x − y) = Sfree
b (x − y) − igs

∫
d4k

(2π)4
e−ik(x−y)

×
1∫

0

dv

[
/k + mQ

(m2
Q − k2)2

Gμν
[
v(x − y)

]
σμν

+ 1

m2
Q − k2

v(xμ − yμ)Gμνγν

]
, (12)

where,

Sfree
Q (x − y) = m2

Q

4π2

K1(mQ

√−(x − y)2 )√−(x − y)2

− i
m2

Q (/x − /y)

4π2(x − y)2
K2

(
mQ

√
−(x − y)2

)
, (13)

and Kn(z) being the modified Bessel function of the second kind.
The next step is to use the expression of the heavy propagators
and perform the derivatives with respect to x and y in Eq. (11).
After setting y = 0, the following final expression for the QCD side
of the correlation function in coordinate space is obtained:

Πμν,αβ = i

64

(
mQ

π

)4

×
∫

d4x eiqx{[Γμν,αβ ] + [β ↔ α] + [ν ↔ μ]
+ [β ↔ α,ν ↔ μ]}, (14)

where,

Γμν,αβ = {−2mQ gαν gβμK1 K2

+ 2
(
m2

Q xαxν gβμ − gαν gβμ + gαμgβν + gαβ gμν

)
K2

2

− 2m2
Q xαxν gβμK1 K3

− 2mQ gαν

(
2xβ xμ − x2 gβμ

)
K2 K3

+ 2m2
Q xαxν

(
2xβ xμ − x2 gβμ

)
K2

3

− 2m2
Q xαxν

(
2xβ xμ − x2 gβμ

)
K2 K4

}
+ nonperturbative contributions, (15)

and

Kn = Kn(mQ
√−x2 )

(
√−x2 )n

. (16)

In the present work, we calculate the contributions of the heavy
quark and gluon condensates in nonperturbative part of the corre-
lation function in QCD side. After a simple calculation we obtain
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for the heavy quark condensate (for the coefficient of the afore-
mentioned structure)

− m3
Q

2(q2 − m2
Q )

〈Q̄ Q 〉.

Using the well-known relation between the heavy quark and
the gluon condensates

mQ 〈Q̄ Q 〉 = − 1

12π

〈
αs

π
G2

〉
,

these two nonperturbative contributions can be written in terms
of gluon condensate contribution. Numerical analysis shows that,
taking into account quark condensates decreases gluon condensate
contribution about 15%.

Few words about the neglected dimension two operator in the
operator product expansion are in order. The term proportional
to 1/q2 introduced in [9] is a phenomenological parametrization
of the higher order contributions to the perturbative series. In
other words, this term can appear when considering any types of
correlation functions where the perturbative series are not zero.
Obviously, this term vanishes when considering the difference of
the correlators induced by vector and axial vector currents, VV-
AA in the chiral limit, mq = 0 (for more details see [10]). In the
present work, we neglect this term because we work to leading
order in αs .

Now, we apply the Fourier transformation to the QCD side of
the correlation function to get its expression in momentum space.
The next step is to select the structure which gives contribution to
the tensor state from both sides of the correlation function, equate
the coefficient of the selected structure from both sides and apply
the Borel transformation to suppress the contribution of the higher
states and continuum. After lengthy calculations, finally we obtain
the following sum rules for the decay constant of the heavy tensor
quarkonia:

f 2
χQ

e
−m2

χQ
/M2 = Nc

m6
χQ

s0∫
4m2

Q

ds

∞∫
1

du
e−s/M2 [s − s(u)]

16π2u6

× {−2m2
Q u3 + [

4M2 − s − s(u)
]

− 2
[
4M2 − s − s(u)

]
u

+ [
2m2

Q + 4M2 − s − s(u)
]
u2}

+ I
(
M2)〈αs

π
G2

〉
, (17)

where,

s(u) = m2
Q

[
u + 1

1 − 1
u

]
, (18)

and the explicit expression of the function I(M2) is quite lengthy
and therefore we do not present it.

In the above sum rules, M2 is the Borel mass parameter, s0
is the continuum threshold and Nc = 3 is the color factor. The
mass of the heavy tensor meson is also obtained applying deriva-
tive with respect to − 1

M2 to the both sides of the sum rules for
the decay constant and dividing by itself, i.e.,

m2
χQ

=
( s0∫

4m2
Q

ds

∞∫
1

du
e−s/M2 [s2 − s s(u)]

16π2u6

× {−2m2
Q u3 + [

4M2 − s − s(u)
]

− 2
[
4M2 − s − s(u)

]
u + [

2m2
Q + 4M2 − s − s(u)

]
u2}

+
s0∫

4m2
Q

ds

∞∫
1

du
e−s/M2 [s − s(u)]

16π2u6

{
4M4(1 − u)2}

− d

d(1/M2)
I
(
M2)〈αs

π
G2

〉)

×
( s0∫

4m2
Q

ds

∞∫
1

du
e−s/M2 [s − s(u)]

16π2u6

× {−2m2
Q u3 + [

4M2 − s − s(u)
]

− 2
[
4M2 − s − s(u)

]
u + [

2m2
Q + 4M2 − s − s(u)

]
u2}

+ I
(
M2)〈αs

π
G2

〉)−1

. (19)

3. Numerical analysis

In this section, we numerically analyze the sum rules for the
mass and decay constant of the ground state tensor quarko-
nia. Some input parameters entering the sum rules are quark
masses, mb = (4.8 ± 0.1) GeV, mc = (1.46 ± 0.05) GeV [4] and
gluon condensate, 〈0| 1

π αsG2|0〉 = (0.012 ± 0.004) GeV4. It should
be noted that recent analysis of experimental data leads to the
〈0| 1

π αsG2|0〉 = (0.005±0.004) GeV4 for the gluon condensate [11].
For conservative estimation in numerical analysis, we also take
into account the value of gluon condensate 〈0| 1

π αsG2|0〉 = (2.16 ±
0.38) × 10−2 GeV4 which follows from sum rules of e+e− → I =
1 hadrons [12] and heavy quarkonia [13–15]. Few words about
quark mass are in order. The aforementioned masses are the pole
masses for the quarks. Using the four loop results for the vac-
uum polarization operator in [16], the running masses of the
charm and beauty quarks, mc(3 GeV) = (0.986 ± 0.013) GeV and
mb(mb) = (4.163 ± 0.016) GeV are obtained. These improved val-
ues of the running masses of charm and beauty quarks as well as
wide range of gluon condensate are used in numerical calculations.
To obtain more reliable results for the mass and decay constant
of the heavy tensor meson, we will also take into account a more
realistic error coming from the range spanned by the pole and run-
ning quark masses as well as the range for the value of the gluon
condensate.

From the sum rules for the decay constant and mass it is clear
that they contain also two auxiliary parameters, continuum thresh-
old s0 and Borel mass parameter M2. The standard criteria in QCD
sum rules is that the physical quantities should be independent of
these mathematical objects, so we should look for working regions
for these parameters at which the masses and decay constants
practically remain unchanged. To determine the working region for
the Borel mass parameter the procedure is as follows: the lower
limit of M2 is obtained requiring that the higher states and con-
tinuum contributions constitute, say, 30% of the total dispersion
integral. The upper limit of M2 is chosen demanding that the sum
rules for the decay constants and masses should be convergent,
i.e., contribution of the operators with higher dimensions is small.
As a result, we choose the regions: 8 GeV2 � M2

χb2
� 20 GeV2 and

4 GeV2 � M2
χc2

� 7 GeV2 for the Borel mass parameter. The contin-
uum threshold s0 is not completely arbitrary but it is correlated to
the energy of the first exited state with quantum numbers of the
interpolating current. Our numerical results are in consistency with
this point and show that in the interval (mχQ 2 + 0.4)2 � s

χQ 2 �
0
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Table 1
Values for the masses and decay constants of the tensor mesons χQ 2.

Present work Experiment [1]

mχb2 (9.90 ± 2.48) GeV (9.91221 ± 0.00057) GeV
mχc2 (3.47 ± 0.95) GeV (3.55620 ± 0.00009) GeV
fχb2 0.0122 ± 0.0072 –
fχc2 0.0111 ± 0.0062 –

(mχQ 2 +0.7)2, the results are practically insensitive to the variation
of this parameter. Here we would like to make the following re-
mark. It is shown in [17] that the continuum threshold s0 can de-
pend on the Borel mass parameter. Therefore, the standard criteria,
namely, weak dependence of the results on variation of the auxil-
iary parameters does not provide us realistic errors, and in fact the
actual error should be large. Following [17], in the present work
we will add also the systematic errors to the numerical values.

Our numerical analysis on the masses and decay constants
leads to the results presented in Table 1. The quoted errors in our
predictions are due to the variations in the continuum threshold
and Borel parameter, uncertainties in quark masses and wide range
of the gluon condensates presented at the beginning of this section
as well as the systematic errors. The results presented in Table 1
show a good consistency between our predictions and the exper-
imental values [1] on the masses of the ground state heavy, χb2
and, χc2 tensor mesons. Our predictions on the decay constants
can be verified in the future experiments.
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