1,189 research outputs found

    Linking genebanks and farmers to urban high-value markets - The case of chili peppers in Peru and Bolivia [Poster]

    Get PDF
    Poster presented at Tropentag Conference. Stuttgart-Hohenheim (Germany), 17-19 Sep 201

    A holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru

    Get PDF
    The IFAD-NUS project, implemented over the course of a decade in two phases, represents the first UN-supported global effort on neglected and underutilized species (NUS). This initiative, deployed and tested a holistic and innovative value chain framework using multi-stakeholder, participatory, inter-disciplinary, pro-poor gender- and nutrition-sensitive approaches. The project has been linking aspects often dealt with separately by R&D, such as genetic diversity, selection, cultivation, harvest, value addition, marketing, and final use, with the goal to contribute to conservation, better incomes, and improved nutrition and strengthened livelihood resilience. The project contributed to the greater conservation of Andean grains and their associated indigenous knowledge, through promoting wider use of their diversity by value chain actors, adoption of best cultivation practices, development of improved varieties, dissemination of high quality seed, and capacity development. Reduced drudgery in harvest and postharvest operations, and increased food safety were achieved through technological innovations. Development of innovative food products and inclusion of Andean grains in school meal programs is projected to have had a positive nutrition outcome for targeted communities. Increased income was recorded for all value chain actors, along with strengthened networking skills and self-reliance in marketing. The holistic approach taken in this study is advocated as an effective strategy to enhance the use of other neglected and underutilized species for conservation and livelihood benefits

    Pressure-induced Superconductivity in a Ferromagnet UGe2_2 -- Resistivity Measurements in Magnetic Field --

    Full text link
    The electrical resistivity measurements in the magnetic field are carried out on the pressure-induced superconductor UGe2_2. The superconductivity is observed from 1.06 to 1.44 GPa. The upper critical field of HC2H_{C2} is anisotropic where HC2(T)H_{C2}(T) exhibits positive curvature for H//bH//b and cc-axis. The characteristic enhancement of HC2H_{C2} is reconfirmed for H//aH//a-axis. In the temperature and field dependence of resistivity at P>PCP > P_{C} where the ferromagnetic ordering disappears, it is observed that the application of the external field along the {\it a}-axis increases the coefficient of Fermi liquid behavior AT2AT^{2} correspondingly to the metamagnetic transition.Comment: To be published in the proceeding of the International Conference on High Pressure Science and Technology(AIRAPT-18),Beijing,China,23-27 July 200

    BDNF promotes target innervation of Xenopus mandibular trigeminal axons in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trigeminal nerves consist of ophthalmic, maxillary, and mandibular branches that project to distinct regions of the facial epidermis. In <it>Xenopus </it>embryos, the mandibular branch of the trigeminal nerve extends toward and innervates the cement gland in the anterior facial epithelium. The cement gland has previously been proposed to provide a short-range chemoattractive signal to promote target innervation by mandibular trigeminal axons. Brain derived neurotrophic factor, BDNF is known to stimulate axon outgrowth and branching. The goal of this study is to determine whether BDNF functions as the proposed target recognition signal in the <it>Xenopus </it>cement gland.</p> <p>Results</p> <p>We found that the cement gland is enriched in BDNF mRNA transcripts compared to the other neurotrophins NT3 and NT4 during mandibular trigeminal nerve innervation. BDNF knockdown in <it>Xenopus </it>embryos or specifically in cement glands resulted in the failure of mandibular trigeminal axons to arborise or grow into the cement gland. BDNF expressed ectodermal grafts, when positioned in place of the cement gland, promoted local trigeminal axon arborisation <it>in vivo</it>.</p> <p>Conclusion</p> <p>BDNF is necessary locally to promote end stage target innervation of trigeminal axons <it>in vivo</it>, suggesting that BDNF functions as a short-range signal that stimulates mandibular trigeminal axon arborisation and growth into the cement gland.</p

    Critical properties and Bose Einstein Condensation in dimer spin systems

    Full text link
    We analyze the spin relaxation time 1/T11/T_1 for a system made of weakly coupled one dimensional ladders.This system allows to probe the dimensional crossover between a Luttinger liquid and a Bose-Einstein condensateof magnons. We obtain the temperature dependence of 1/T11/T_1 in the various dimensional regimes, and discuss the experimental consequences.Comment: 4 pages, RevTeX 4, 3 EPS figure

    Multi-Triplet Magnons in SrCu2_2(BO3_3)2_2 Studied by Thermal Conductivity Measurements in Magnetic Fields

    Full text link
    We have measured the thermal conductivity parallel to the a-axis of the Zn-free and 1% Zn-substituted SrCu2x_{2-x}Znx_x(BO3_3)2_2 in magnetic fields up to 14 T, in order to examine the thermal conductivity due to the multi-triplet magnons. It has been found that the thermal conductivity peak observed in the spin gap state is suppressed by the substitution of Zn for Cu in high magnetic fields above 6 T, while it is not changed in low magnetic fields below 6 T. The results suggest that the thermal conductivity peak in the spin-gap state of SrCu2_2(BO3_3)2_2 is composed of not only thermal conductivity due to phonons but also that due to the multi-triplet magnons in high fields above 6 T.Comment: 7 pages, 2 figure

    Going with the µFlow: Reinterpreting Energy Input in Organic Synthesis

    Get PDF
    The popularity of microflow chemistry has skyrocketed in the last 20 years, more and more chemists are switching from macro-batch reactors to miniaturized flow devices. As a result, microfluidics is paving its way into the future by consolidating its position in organic chemistry not only as a trend but as a new, effective, and sustainable way of conducting chemistry, that clearly will continue to grow and evolve. This perspective highlights the most relevant examples of innovative enhancing technologies applied to microflow reactors aimed to improve and intensify chemical processes. The extensive applicability of microflow chemistry is further illustrated by briefly discussing examples of complex integrated microsystems and scale-up technologies, demonstrating ultimately that microflow chemistry has the potential to become the ideal technology for the future

    Selective excision of the centromere chromatin complex from Saccharomyces cerevisiae.

    Get PDF
    We have taken advantage of the known structural parameters associated with centromere DNA in vivo to construct a CEN fragment that can be selectively excised from the chromatin DNA with restriction endonucleases. CEN3 DNA is organized in chromatin such that a 220-250- bp region encompassing the elements of centromere homology is resistant to nuclease digestion. Restriction enzyme linkers encoding the Bam HI- recognition site were ligated to a 289 base pair DNA segment that spans the 220-250-bp protected core (Bloom et al., 1984). Replacement of this CEN3-Bam HI linker cassette into a chromosome or plasmid results in formation of a complete structural and functional centromeric unit. A centromere core complex that retains its protected chromatin conformation can be selectively excised from intact nuclei by restriction with the enzyme Bam HI. The centromeric protein-DNA complex is therefore not dependent upon the intact torsional constrains on linear chromosomes for its structural integrity. Isolation of this complex provides a novel approach to characterizing authentic centromeric proteins bound to DNA in their native state
    corecore