1,641 research outputs found
Customer repurchase intention: a general structural equation model
This paper develops a general service sector model of repurchase intention from the consumer theory literature. A key contribution of the structural equation model is the incorporation of customer perceptions of equity and value and customer brand preference into an integrated repurchase intention analysis. The model describes the extent to which customer repurchase intention is influenced by seven important factors – service quality, equity and value, customer satisfaction, past loyalty, expected switching cost and brand preference. The general model is applied to customers of comprehensive car insurance and personal superannuation services. The analysis finds that although perceived quality does not directly affect customer satisfaction, it does so indirectly via customer equity and value perceptions. The study also finds that past purchase loyalty is not directly related to customer satisfaction or current brand preference and that brand preference is an intervening factor between customer satisfaction and repurchase intention. The main factor influencing brand preference was perceived value with customer satisfaction and expected switching cost having less influence.<br /
Ozonolysis of a-phellandrene - Part 2 : Compositional analysis of secondary organic aerosol highlights the role of stabilized Criegee intermediates
The molecular composition of secondary organic aerosol (SOA) generated from the ozonolysis of α-phellandrene is investigated for the first time using high pressure liquid chromatography coupled to high-resolution Quadrupole-Orbitrap tandem mass spectrometry. In total, 21 prominent products or isomeric product groups were identified using both positive and negative ionisation modes, with potential formation mechanisms discussed. The aerosol was found to be composed primarily of polyfunctional first- and second-generation species containing one or more carbonyl, acid, alcohol and hydroperoxide functionalities, with the products significantly more complex than those proposed from basic gas-phase chemistry in the companion paper (Mackenzie-Rae et al., 2017a). Mass spectra show a large number of dimeric products are also formed. Both direct scavenging evidence using formic acid, and indirect evidence from double bond equivalency factors, suggests the dominant oligomerisation mechanism is the bimolecular reaction of stabilised Criegee intermediates (SCIs) with non-radical ozonolysis products. Saturation vapour concentration estimates suggest monomeric species cannot explain the rapid nucleation burst of fresh aerosol observed in chamber experiments, hence dimeric species are believed to be responsible for new particle formation, with detected first- and second-generation products driving further particle growth in the system. Ultimately, identification of the major constituents and formation pathways of α-phellandrene SOA leads to a greater understanding of the atmospheric processes and implications of monoterpene emissions and SCIs, especially around Eucalypt forests regions where α-phellandrene is primarily emitted
Koszul dual 2-functors and extension algebras of simple modules for
Let p be a prime number. We compute the Yoneda extension algebra of
over an algebraically closed field of characteristic p by developing a theory
of Koszul duality for a certain class of 2-functors, one of which controls the
category of rational representations of over such a field.Comment: 39 pages, title changed in second version, to appear in Selecta Math.
(N.S.
Generalised models for torsional spine and fan magnetic reconnection
Three-dimensional null points are present in abundance in the solar corona,
and the same is likely to be true in other astrophysical environments. Recent
studies suggest that reconnection at such 3D nulls may play an important role
in the coronal dynamics. In this paper the properties of the torsional spine
and torsional fan modes of magnetic reconnection at 3D nulls are investigated.
New analytical models are developed, which for the first time include a current
layer that is spatially localised around the null, extending along either the
spine or the fan of the null. These are complemented with numerical
simulations. The principal aim is to investigate the effect of varying the
degree of asymmetry of the null point magnetic field on the resulting
reconnection process - where previous studies always considered a non-generic
radially symmetric null. The geometry of the current layers within which
torsional spine and torsional fan reconnection occur is found to be strongly
dependent on the symmetry of the magnetic field. Torsional spine reconnection
still occurs in a narrow tube around the spine, but with elliptical
cross-section when the fan eigenvalues are different, and with the short axis
of the ellipse being along the strong field direction. The spatiotemporal peak
current, and the peak reconnection rate attained, are found not to depend
strongly on the degree of asymmetry. For torsional fan reconnection, the
reconnection occurs in a planar disk in the fan surface, which is again
elliptical when the symmetry of the magnetic field is broken. The short axis of
the ellipse is along the weak field direction, with the current being peaked in
these weak field regions. The peak current and peak reconnection rate in this
case are clearly dependent on the asymmetry, with the peak current increasing
but the reconnection rate decreasing as the degree of asymmetry is increased
Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models
We study prediction of future outcomes with supervised models that use
privileged information during learning. The privileged information comprises
samples of time series observed between the baseline time of prediction and the
future outcome; this information is only available at training time which
differs from the traditional supervised learning. Our question is when using
this privileged data leads to more sample-efficient learning of models that use
only baseline data for predictions at test time. We give an algorithm for this
setting and prove that when the time series are drawn from a non-stationary
Gaussian-linear dynamical system of fixed horizon, learning with privileged
information is more efficient than learning without it. On synthetic data, we
test the limits of our algorithm and theory, both when our assumptions hold and
when they are violated. On three diverse real-world datasets, we show that our
approach is generally preferable to classical learning, particularly when data
is scarce. Finally, we relate our estimator to a distillation approach both
theoretically and empirically
The CRI v2.2 reduced degradation scheme for isoprene
The reduced representation of isoprene degradation in the Common Representative Intermediates (CRI) mechanism has been systematically updated, using the Master Chemical Mechanism (MCM v3.3.1) as a reference benchmark, with the updated mechanism being released as CRI v2.2. The complete isoprene degradation mechanism in CRI v2.2 consists of 186 reactions of 56 closed shell and free radical species, this being an order of magnitude reduction in size compared with MCM v3.3.1. The chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3) is treated. An overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of products that are also generated from the O3- and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including recycling of HOx and NOx. The performance of the CRI v2.2 isoprene mechanism has been compared with those of the preceding version (CRI v2.1) and the reference MCM v3.3.1 over a range of relevant conditions, using a box model of the tropical forested boundary layer. In addition, tests are carried out to ensure that the performance of MCM v3.3.1 remains robust to more recently reported information. CRI v2.2 has also been implemented into the STOCHEM chemistry-transport model, with a customized close-variant of CRI v2.2 implemented into the EMEP MSC-W chemistry-transport model. The results of these studies are presented and used to illustrate the global-scale impacts of the mechanistic updates on HOx radical concentrations
A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical
Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K
D-brane categories
This is an exposition of recent progress in the categorical approach to
D-brane physics. I discuss the physical underpinnings of the appearance of
homotopy categories and triangulated categories of D-branes from a string field
theoretic perspective, and with a focus on applications to homological mirror
symmetry.Comment: 37 pages, IJMPA styl
Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping
The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
Support varieties for selfinjective algebras
Support varieties for any finite dimensional algebra over a field were
introduced by Snashall-Solberg using graded subalgebras of the Hochschild
cohomology. We mainly study these varieties for selfinjective algebras under
appropriate finite generation hypotheses. Then many of the standard results
from the theory of support varieties for finite groups generalize to this
situation. In particular, the complexity of the module equals the dimension of
its corresponding variety, all closed homogeneous varieties occur as the
variety of some module, the variety of an indecomposable module is connected,
periodic modules are lines and for symmetric algebras a generalization of
Webb's theorem is true
- …