169 research outputs found

    Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors

    Get PDF
    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    The Central Clock Neurons Regulate Lipid Storage in Drosophila

    Get PDF
    A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage

    Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake.

    Get PDF
    ABSTRACT Unbound partition coefficient (K puu ) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. K puu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transportertransfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher K puu (&gt;4) than the (S)-enantiomers (&lt;1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high K puu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different K puu values in human hepatocytes (K puu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. K puu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (K m ) of SLC13A5 was estimated to be 24 mM for PF-06649298 in human hepatocytes. In vitro K puu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo K puu of liver-to-plasma, illustrating the potential of this approach to predict in vivo K puu from in vitro systems

    Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol

    Get PDF
    The presence of Fc-receptor-blocking factors in the sera of normal and insulin-dependent diabetic pregnant women was investigated by means of an antibody-dependent cell-mediated cytotoxicity assay. Sera from normal pregnant women induced a significant depression of antibody dependent cell-mediated cytotoxicity when compared with sera from normal and diabetic non-pregnant women (p less than 0.0001; p less than 0.002, respectively). The effect of sera from diabetic pregnant women, however, was not different from that observed with sera from normal and diabetic non-pregnant women. Thus, we confirm the presence of Fc-receptor-blocking factors in the sera of normal pregnant women. The higher cytotoxicity levels measured in the presence of sera from pregnant women with insulin-dependent diabetes suggests that the titres of such factors are reduced in this conditio

    Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-Dotatate: an analysis of the NETTER-1 study

    Get PDF
    Purpose: To assess the impact of baseline liver tumour burden, alkaline phosphatase (ALP) elevation, and target lesion size on treatment outcomes with 177Lu-Dotatate. Methods: In the phase 3 NETTER-1 trial, patients with advanced, progressive midgut neuroendocrine tumours (NET) were randomised to 177Lu-Dotatate (every 8 weeks, four cycles) plus octreotide long-acting release (LAR) or to octreotide LAR 60 mg. Primary endpoint was progression-free survival (PFS). Analyses of PFS by baseline factors, including liver tumour burden, ALP elevation, and target lesion size, were performed using Kaplan-Meier estimates; hazard ratios (HRs) with corresponding 95% CIs were estimated using Cox regression. Results: Significantly prolonged median PFS occurred with 177Lu-Dotatate versus octreotide LAR 60 mg in patients with low ( 50%) liver tumour burden (HR 0.187, 0.216, 0.145), and normal or elevated ALP (HR 0.153, 0.177), and in the presence or absence of a large target lesion (diameter > 30 mm; HR, 0.213, 0.063). Within the 177Lu-Dotatate arm, no significant difference in PFS was observed amongst patients with low/moderate/high liver tumour burden (P = 0.7225) or with normal/elevated baseline ALP (P = 0.3532), but absence of a large target lesion was associated with improved PFS (P = 0.0222). Grade 3 and 4 liver function abnormalities were rare and did not appear to be associated with high baseline liver tumour burden. Conclusions: 177Lu-Dotatate demonstrated significant prolongation in PFS versus high-dose octreotide LAR in patients with advanced, progressive midgut NET, regardless of baseline liver tumour burden, elevated ALP, or the presence of a large target lesion. Clinicaltrials.gov: NCT01578239, EudraCT: 2011-005049-11

    Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки

    Get PDF
    Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)

    Diacylglycerol triggers Rim101 pathway dependent necrosis in yeast: a model for lipotoxicity

    Get PDF
    The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21 dependent sensing complex and activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity i.e. high fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved

    Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.

    Get PDF
    Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects
    corecore