20 research outputs found

    Mitochondrial DNA common deletion is not associated with thyroid, breast and colorectal tumors in Turkish patients

    Get PDF
    Recently, efforts have been focused on mitochondrial DNA changes and their relation to human cancers. Among them, a 4977 bp deletion of mitochondrial DNA, named “common deletion”, has been investigated in several types of tumors, with inconsistent results. In this study, we investigated the presence of the common deletion in tissues from 25 breast, 25 colorectal and 50 thyroid tumors and in the adjacent healthy tissues from Turkish patients. Samples from healthy volunteers were also evaluated for comparison. Two PCR-based methods were used for the detection of the common deletion. First, two pairs of primers were used to amplify wild-type and deleted mtDNA. Then, a highly sensitive nested-PCR was performed, to determine low amounts of deleted genomes. By the first method, wild-type mtDNAs were observed in all samples, but a deletion was observed in only six thyroid samples, by using the nested-PCR method. In conclusion, the mitochondrial common deletion was very rare in our study group and did not appear to be not related with cancer

    R506Q (FV Leiden) and R485K mutations in the factor V gene: Incidence in deep venous thrombosis and hemophilia A patients

    No full text
    R506Q (FV Leiden) mutation in exon 10 of the factor V (FV) gene is highly prevalent in European populations and it has been suggested that the coinheritance of FV Leiden mutation may be an important modifier of hemophilia A phenotype. One other substitution R485K in the same exon, with no functional consequences in vitro, is significantly higher in Thailand and has been associated with thrombophilia. In order to see if any correlation exists between R506Q and hemophilia phenotype and between R485K and thrombosis in Turkish patients, DGGE analysis of exon 10 of the FV gene is carried out among deep venous thrombosis (DVT) and hemophilia A patients. Our results indicate that the allelic frequency of the R485K polymorphism is similar to the frequency detected in Europe, and apparently, is not associated with an increased risk of thrombosis in the Turkish population. It is also not possible to show a modifier effect of FV Leiden on hemophilia A phenotype among the limited number of patients included in this study

    Molecular pathology of haemophilia A in Turkish patients: Identification of 36 independent mutations

    No full text
    PubMed ID: 11554935Haemophilia A is an X-linked recessive bleeding disorder caused by heterogeneous mutations in the factor VIII gene. In an attempt to reveal the molecular pathology of Turkish haemophilia A patients, the coding sequence of the gene, excluding a large portion of exon 14, was amplified from genomic DNA and subjected to denaturing gradient gel electrophoresis prior to DNA sequencing. Fifty-nine haemophilia A patients were included in the study with severe, moderate and mild phenotypes observed in 24, 15 and 16 patients, respectively. Factor VIII activity and clinical phenotypes were not available for four patients. A total of 36 independent mutations were found, with a mutation detection efficacy of 61%. The mutations that were reported for the first time include 20 point mutations, one 8-bp insertion (TCAAGATA) in exon 4 and one large deletion greater than 2.8 kb involving exon 14. The novel point mutations were composed of three nonsense (Ser681-Ter, Cys2021Ter and Gln2113Ter), one splicing error (IVS-1G›A), 15 missense mutations (Lys48Asn; Leu-98Phe; Thr118Ala; Cys248Tyr; Glu456Lys; Asp560Ala; Tyr664Cys; Phe679Leu; Gly691Trp; Asp1769His; Val1857Leu; Gly2026Gln; Arg2163-Pro; Asp2288Ala; and Arg2304Leu) and a T deletion in exon 25 that caused a frameshift followed by a stop codon. All missense mutations except Val1857Leu, which maintained a conserved nonpolar R group, occurred at amino acids conserved among four species and were most probably pathogenic. In addition, two sequence changes (IVS3-9C›T) and (Leu2230Leu) were also detected in patients carrying Val1857Leu and Phe679Leu missense mutations, respectively. Identification of mutation origins in eight sporadic cases revealed an equal sex ratio of mutations

    A polymorphism in the IL-5 gene is associated with inhibitor development in severe hemophilia a patients [Agi{dotless}r hemofili a hastalari{dotless}nda i·nhibitör gelişimi ile IL-5 genindeki bir polimorfizmin i·lişkilendirilmesi]

    No full text
    Objective: A severe complication in the replacement therapy of hemophilia A (HA) patients is the development of alloantibodies (inhibitors) against factor VIII, which neutralizes the substituted factor. The primary genetic risk factors influencing the development of inhibitors are F8 gene mutations. Interleukins and cytokines that are involved in the regulation of B-lymphocyte development are other possible targets as genetic risk factors. This study assesses the possible involvement of 9 selected single nucleotide gene polymorphisms (SNPs) with interleukins (IL-4, IL-5, and IL-10), transforming growth factor beta 1 (TGF-ß1), and interferon gamma (IFN-?) in inhibitor development in severely affected HA patients carrying a null mutation in the F8 gene. Materials and Methods: A total of 173 HA patients were screened for intron 22 inversion and null mutations (nonsense and deletions). Genotyping of a total of 9 SNPs in genes IL-4, IL-5, IL-10, TGF-ß1, and IFN-? in 103 patients and 100 healthy individuals was carried out. Results: An association analysis between 42 inhibitor (+) and 61 inhibitor (-) patients showed a significant association with the T allele of rs2069812 in the IL-5 gene promoter and patients with inhibitors (p=0.0251). The TT genotype was also significantly associated with this group with a p-value of 0.0082, odds ratio of about 7, and confidence interval of over 90%, suggesting that it is the recessive susceptibility allele and that the C allele is the dominant protective allele. Conclusion: The lack of other variants in the IL-5 gene of patients and controls suggests that rs2069812 may be a regulatory SNP and may have a role in B-lymphocyte development, constituting a genetic risk factor in antibody development

    Molecular pathology of haemophilia B in Turkish patients: Identification of a large deletion and 33 independent point mutations

    No full text
    PubMed ID: 12588353Heterogeneous mutations in the coagulation factor IX (FIX) gene result in a bleeding tendency known as haemophilia B. The haemophilia B mutation database has a total of 2353 patient entries, including 10 of the estimated 1000 Turkish patients. In this study, a more comprehensive analysis of the molecular pathology of haemophilia B in Turkey revealed one large deletion and 33 point mutations in the FIX gene of 34 unrelated patients. Haplotype analysis using six polymorphic sites showed that the mutations identified in a total of 45 patients occurred on 13 different haplotypes and that each mutation was family specific

    Factor 8 (F8) gene mutation profile of Turkish hemophilia A patients with inhibitors

    No full text
    PubMedID: 18600086Factor VIII (FVIII) replacement therapy is ineffective in hemophilia A patients who develop alloantibodies (inhibitors) against FVIII. The type of factor 8 (F8) gene mutation, genes in the major histocompatibility complex loci, and also polymorphisms in IL-10 and tumor necrosis factor-? are the major predisposing factors for inhibitor formation. The present study was initiated to reveal the F8 gene mutation profile of 30 severely affected high-responder patients with inhibitor levels of more than 5 Bethesda U (BU)/ml and four low-responder patients with inhibitors less than 5 BU/ml. Southern blot and PCR analysis were performed to detect intron 22 and intron 1 inversions, respectively. Point mutations were screened by DNA sequence analysis of all coding regions, intron/exon boundaries, promoter and 3' UTR regions of the F8 gene. The prevalent mutation was the intron 22 inversion among the high-responder patients followed by large deletions, small deletions, and nonsense mutations. Only one missense and one splicing error mutation was seen. Among the low-responder patients, three single nucleotide deletions and one intron 22 inversion were found. All mutation types detected were in agreement with the severe hemophilia A phenotype, most likely leading to a deficiency of and predisposition to the development of alloantibodies against FVIII. It is seen that Turkish hemophilia A patients with major molecular defects have a higher possibility of developing inhibitors. © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins
    corecore