36 research outputs found

    Disentangling 2:1 resonant radial velocity orbits from eccentric ones and a case study for HD 27894

    Get PDF
    In radial velocity observations, a pair of extrasolar planets near a 2:1 orbital resonance can be misinterpreted as a single eccentric planet, if data are sparse and measurement precision insufficient to distinguish between these models. We determine the fraction of alleged single-planet RV detected systems for which a 2:1 resonant pair of planets is also a viable model and address the question of how the models can be disentangled. By simulation we quantified the mismatch arising from applying the wrong model. Model alternatives are illustrated using the supposed single-planet system HD 27894 for which we also study the dynamical stability of near-2:1 resonant solutions. From the data scatter around the fitted single-planet Keplerians, we find that for 74%74\% of the 254254 putative single-planet systems, a 2:1 resonant pair cannot be excluded as a viable model, since the error due to the wrong model is smaller than the scatter. For 187187 stars χ2\chi ^2-probabilities can be used to reject the Keplerian models with a confidence of 95%95\% for 54%54\% of the stars and with 99.9%99.9\% for 39%39\% of the stars. For HD 27894 a considerable fit improvement is obtained when adding a low-mass planet near half the orbital period of the known Jovian planet. Dynamical analysis demonstrates that this system is stable when both planets are initially placed on circular orbits. For fully Keplerian orbits a stable system is only obtained if the eccentricity of the inner planet is constrained to <0.3<0.3. A large part of the allegedly RV detected single-planet systems should be scrutinized in order to determine the fraction of systems containing near-2:1 resonant pairs of planets. Knowing the abundance of such systems will allow us to revise the eccentricity distribution for extrasolar planets and provide direct constraints for planetary system formation.Comment: 12 pages, 8 figures, one of them composed by two files, accepted by A&A, citations may appear in a non-standard way (double brackets) due to reformatting needs. Abstract slightly adjuste

    TESS exoplanet candidates validated with HARPS archival data. A massive Neptune around GJ143 and two Neptunes around HD23472

    Full text link
    We aim at the discovery of new planetary systems by exploiting the transit light curve results from TESS orbital observatory's Sector 1 and 2 observations and validating them with precise Doppler measurements obtained from archival HARPS data. Taking advantage of the reported TESS transit events around GJ143 (TOI 186) and HD23472 (TOI 174) we model their HARPS precise Doppler measurements and derive orbital parameters for these two systems. For the GJ143 system TESS has reported only a single transit, and thus its period is unconstrained from photometry. Our RV analysis of GJ143 reveal the full Keplerian solution of the system, which is consistent with an eccentric planet with a mass almost twice that of Neptune and a period of PbP_{\rm b} = 35.590.01+0.0135.59_{-0.01}^{+0.01} days. Our estimates of the GJ143 b planet are fully consistent with the transit timing from TESS. We confirm the two-planet system around HD23472, which according to our analysis is composed of two Neptune mass planets in a possible 5:3 MMR.Comment: Submitted to A&A on 10th December 2018, Accepted on 14 January 2019, Published online on 30 January 201

    Radial-velocity jitter of stars as a function of observational timescale and stellar age

    Full text link
    Stars show various amounts of radial velocity (RV) jitter due to varying stellar activity levels. The typical amount of RV jitter as a function of stellar age and observational timescale has not yet been systematically quantified, although it is often larger than the instrumental precision of modern high-resolution spectrographs used for Doppler planet detection and characterization. We aim to empirically determine the intrinsic stellar RV variation for mostly G and K dwarf stars on different timescales and for different stellar ages independently of stellar models. We also focus on young stars (\lesssim 30 Myr), where the RV variation is known to be large. We use archival FEROS and HARPS RV data of stars which were observed at least 30 times spread over at least two years. We then apply the pooled variance (PV) technique to these data sets to identify the periods and amplitudes of underlying, quasiperiodic signals. We show that the PV is a powerful tool to identify quasiperiodic signals in highly irregularly sampled data sets. We derive activity-lag functions for 20 putative single stars, where lag is the timescale on which the stellar jitter is measured. Since the ages of all stars are known, we also use this to formulate an activity--age--lag relation which can be used to predict the expected RV jitter of a star given its age and the timescale to be probed. The maximum RV jitter on timescales of decades decreases from over 500 m/s for 5 Myr-old stars to 2.3 m/s for stars with ages of around 5 Gyr. The decrease in RV jitter when considering a timescale of only 1 d instead of 1 yr is smaller by roughly a factor of 4 for 5 Myr old stars, and a factor of 1.5 for stars with an age of 5 Gyr. The rate at which the RV jitter increases with lag strongly depends on stellar age and ranges from a few days for a few 10 Myr old stars to presumably decades for stars with an age of a few gigayears.Comment: 15 pages, 7 Figures; Changelog v2: Updated link to CDS for table E.1; rearranged Fig. 2 to match journal layou

    Pathfinder first light: alignment, calibration, and commissioning of the LINC-NIRVANA ground-layer adaptive optics subsystem

    Full text link
    We present descriptions of the alignment and calibration tests of the Pathfinder, which achieved first light during our 2013 commissioning campaign at the LBT. The full LINC-NIRVANA instrument is a Fizeau interferometric imager with fringe tracking and 2-layer natural guide star multi-conjugate adaptive optics (MCAO) systems on each eye of the LBT. The MCAO correction for each side is achieved using a ground layer wavefront sensor that drives the LBT adaptive secondary mirror and a mid-high layer wavefront sensor that drives a Xinetics 349 actuator DM conjugated to an altitude of 7.1 km. When the LINC-NIRVANA MCAO system is commissioned, it will be one of only two such systems on an 8-meter telescope and the only such system in the northern hemisphere. In order to mitigate risk, we take a modular approach to commissioning by decoupling and testing the LINC-NIRVANA subsystems individually. The Pathfinder is the ground-layer wavefront sensor for the DX eye of the LBT. It uses 12 pyramid wavefront sensors to optically co-add light from natural guide stars in order to make four pupil images that sense ground layer turbulence. Pathfinder is now the first LINC-NIRVANA subsystem to be fully integrated with the telescope and commissioned on sky. Our 2013 commissioning campaign consisted of 7 runs at the LBT with the tasks of assembly, integration and communication with the LBT telescope control system, alignment to the telescope optical axis, off-sky closed loop AO calibration, and finally closed loop on-sky AO. We present the programmatics of this campaign, along with the novel designs of our alignment scheme and our off-sky calibration test, which lead to the Pathfinder's first on-sky closed loop images

    New HARPS and FEROS observations of GJ1046

    Full text link
    In this paper we present new precise Doppler data of GJ1046 taken between November 2005 and July 2018 with the HARPS and the FEROS high-resolution spectographs. In addition, we provide a new stellar mass estimate of GJ1046 and we update the orbital parameters of the GJ1046 system. These new data and analysis could be used together with the GAIA epoch astrometry, when available, for braking the sini\sin i degeneracy and revealing the true mass of the GJ1046 system.Comment: 2 pages, 1 figure, 1 table with RV data (available only in the Astro-PH version of the paper), Accepted by RNAA

    The Extrasolar Planet epsilon Eridani b - Orbit and Mass

    Full text link
    Hubble Space Telescope observations of the nearby (3.22 pc), K2 V star epsilon Eridani have been combined with ground-based astrometric and radial velocity data to determine the mass of its known companion. We model the astrometric and radial velocity measurements simultaneously to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size. Because of the long period of the companion, \eps b, we extend our astrometric coverage to a total of 14.94 years (including the three year span of the \HST data) by including lower-precision ground-based astrometry from the Allegheny Multichannel Astrometric Photometer. Radial velocities now span 1980.8 -- 2006.3. We obtain a perturbation period, P = 6.85 +/- 0.03 yr, semi-major axis, alpha =1.88 +/- 0.20 mas, and inclination i = 30.1 +/- 3.8 degrees. This inclination is consistent with a previously measured dust disk inclination, suggesting coplanarity. Assuming a primary mass M_* = 0.83 M_{\sun}, we obtain a companion mass M = 1.55 +/- 0.24 M_{Jup}. Given the relatively young age of epsilon Eri (~800 Myr), this accurate exoplanet mass and orbit can usefully inform future direct imaging attempts. We predict the next periastron at 2007.3 with a total separation, rho = 0.3 arcsec at position angle, p.a. = -27 degrees. Orbit orientation and geometry dictate that epsilon Eri b will appear brightest in reflected light very nearly at periastron. Radial velocities spanning over 25 years indicate an acceleration consistent with a Jupiter-mass object with a period in excess of 50 years, possibly responsible for one feature of the dust morphology, the inner cavity

    Evidence for a Long-period Planet Orbiting Epsilon Eridani

    Full text link
    High precision radial velocity (RV) measurements spanning the years 1980.8--2000.0 are presented for the nearby (3.22 pc) K2 V star ϵ\epsilon Eri. These data, which represent a combination of six independent data sets taken with four different telescopes, show convincing variations with a period of \approx 7 yrs. A least squares orbital solution using robust estimation yields orbital parameters of period, PP = 6.9 yrs, velocity KK-amplitude == 19 {\ms}, eccentricity ee == 0.6, projected companion mass MM sin ii = 0.86 MJupiterM_{Jupiter}, and semi-major axis a2a_2 == 3.3 AU. Ca II H&K S-index measurements spanning the same time interval show significant variations with periods of 3 and 20 yrs, yet none at the RV period. If magnetic activity were responsible for the RV variations then it produces a significantly different period than is seen in the Ca II data. Given the lack of Ca II variation with the same period as that found in the RV measurements, the long-lived and coherent nature of these variations, and the high eccentricity of the implied orbit, Keplerian motion due to a planetary companion seems to be the most likely explanation for the observed RV variations. The wide angular separation of the planet from the star (approximately 1 arc-second) and the long orbital period make this planet a prime candidate for both direct imaging and space-based astrometric measurements.Comment: To appear in Astrophysical Journal Letters. 9 pages, 2 figure

    Deep imaging survey of the environment of Alpha Centauri - I. Adaptive optics imaging of Alpha Cen B with VLT-NACO

    Get PDF
    Context: Alpha Centauri is our closest stellar neighbor, at a distance of only 1.3 pc, and its two main components have spectral types comparable to the Sun. This is therefore a favorable target for an imaging search for extrasolar planets. Moreover, indications exist that the gravitational mass of Alpha Cen B is higher than its modeled mass, the difference being consistent with a substellar companion of a few tens of Jupiter masses. Aims: We searched for faint comoving companions to Alpha Cen B. As a secondary objective, we built a catalogue of the detected background sources. Methods: We used the NACO adaptive optics system of the VLT in the J, H, and Ks bands to search for companions to Alpha Cen B. This instrument allowed us to achieve a very high sensitivity to point-like sources, with a limiting magnitude of m\_Ks ~ 18 at 7" from the star. We complemented this data set with archival coronagraphic images from the HST-ACS instrument to obtain an accurate astrometric calibration. Results: Over the observed area, we did not detect any comoving companion to Alpha Cen B down to an absolute magnitude of 19-20 in the H and Ks bands. However, we present a catalogue of 252 background objects within about 15" of the star. This catalogue fills part of the large void area that surrounds Alpha Cen in sky surveys due to the strong diffused light. We also present a model of the diffused light as a function of angular distance for the NACO instrument, that can be used to predict the background level for bright star observations. Conclusions: According to recent numerical models, the limiting magnitude of our search sets the maximum mass of possible companions to 20-30 times Jupiter, between 7 and 20 AU from Alpha Cen B.Comment: 15 pages, accepted for publication in A&
    corecore