88 research outputs found

    Experimentelle Untersuchung der radialen Verformbarkeit von Stents

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Infolge der mechanischen Unterstützung der Gefäßwand nach Stentimplantation kann eine akute Durchmesservergrößerung gegenüber konventioneller Ballonangioplastie (PTCA) erreicht und die Restenoserate gesenkt werden. Eine ausreichende Widerstandsfähigkeit gegenüber äußeren Kräften ist eine Grundvoraussetzung für optimale Ergebnisse in der Stentapplikation. Aufgrund der Vielzahl der verwendeten Materialien und Gestaltungsprinzipien bestehen große Unterschiede in dem mechanischen Verhalten der kommerziell verfügbaren Stents. Die Kenntnis dieser Verhaltensweisen stellt eine essentielle Grundlage einer an die Läsion angepaßten Stentauswahl dar. Obwohl bisher verschiedene Studien das Stentverhalten analysierten, fehlt es aufgrund unterschiedlicher Prüfverfahren an einer Vergleichbarkeit der Ergebnisse. Ziel dieses Beitrages ist die parallele Untersuchung von acht aktuellen Stenttypen. Zu diesem Zweck wurde eine Ultraschall-Meßvorrichtung zur standardisierten, quantitativen Evaluation der kompressiv-mechanischen Eigenschaften von Koronarstents entwickelt. Mit Hilfe dieser Vorrichtung konnte darüberhinaus der Einfluß der Stentimplantation auf das radiale Dehnungsverhalten der Arterienwand untersucht werden

    Exploiting optical near fields for phase change memories

    Get PDF
    We apply a recently developed technique based on optical near fields to achieve reversible phase switching in Ge2 Sb2 Te 5 films. By placing dielectric microspheres at the film surface and exposing them to pulsed laser light, a complex intensity distribution due to the optical near field can be created at the film surface. We demonstrate writing and erasing operations of patterns through phase switching. Spheres can be removed after an operation by optical near fields without ablation. Data erasure is achieved with and without near fields. The erasure method used can be determined from the result and erased information can be retrieved although being inverted. Three distinct material states are identified within patterns, showing clear contrast and sharp borders between them, thus opening the possibility of three-level data storage. Our results suggest that optical near fields are a promising candidate for developing strategies in data storage, encryption, and multiplexing. © 2011 American Institute of Physics.Peer Reviewe

    Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide

    Get PDF
    Nanoscale devices in which the interaction with light can be configured using external control signals hold great interest for next-generation optoelectronic circuits. Materials exhibiting a structural or electronic phase transition offer a large modulation contrast with multi-level optical switching and memory functionalities. In addition, plasmonic nanoantennas can provide an efficient enhancement mechanism for both the optically induced excitation and the readout of materials strategically positioned in their local environment. Here, we demonstrate picosecond all-optical switching of the local phase transition in plasmonic antenna-vanadium dioxide (VO2) hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hotspots. Polarization- and wavelength-dependent pump-probe spectroscopy of multifrequency crossed antenna arrays shows that nanoscale optical switching in plasmonic hotspots does not affect neighboring antennas placed within 100 nm of the excited antennas. The antenna-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond time scale. The hybrid, nanoscale excitation mechanism results in 20 times reduced switching energies and 5 times faster recovery times than a VO2 film without antennas, enabling fully reversible switching at over two million cycles per second and at local switching energies in the picojoule range. The hybrid solution of antennas and VO2 provides a conceptual framework to merge the field localization and phase-transition response, enabling precise, nanoscale optical memory functionalities

    Exploiting optical near fields for phase change memories

    Get PDF
    We apply a recently developed technique based on optical near fields to achieve reversible phase switching in Ge2 Sb2 Te 5 films. By placing dielectric microspheres at the film surface and exposing them to pulsed laser light, a complex intensity distribution due to the optical near field can be created at the film surface. We demonstrate writing and erasing operations of patterns through phase switching. Spheres can be removed after an operation by optical near fields without ablation. Data erasure is achieved with and without near fields. The erasure method used can be determined from the result and erased information can be retrieved although being inverted. Three distinct material states are identified within patterns, showing clear contrast and sharp borders between them, thus opening the possibility of three-level data storage. Our results suggest that optical near fields are a promising candidate for developing strategies in data storage, encryption, and multiplexing. © 2011 American Institute of Physics.Peer Reviewe

    Ultraviolet optical near-fields of microspheres imprinted in phase change films

    Get PDF
    We report an experimental method for directly imaging optical near-fields of dielectric microspheres upon illumination with ultraviolet nanosecond laser pulses. The intensity distribution is imprinted in chalcogenide films leaving behind a characteristic fingerprint with features below 200 nm in size, which we read out with high-resolution field emission scanning electron microscopy. The experimental results are well matched by a rigorous solution of Maxwell's equations. Compared to previous works using infrared femtosecond laser pulses, the use of ultraviolet nanosecond pulses is identified to be superior in terms of minimum recordable features size and surface roughness of the imprint. © 2010 American Institute of Physics.Peer Reviewe
    corecore