36 research outputs found

    Transpiration of a spruce and beech stand under soil drought conditions in the Tharandt Forest

    Get PDF
    To evaluate the water balance of a site, requirements of the forest stand under changing environmental conditions have to be considered. Among the different components of the site water balance, stand transpiration represents the physiological response of the trees and can be taken as a link to carbon relations. A regulating and hence critical parameter mediating between water and carbon balance is canopy conductance. Water-use efficiency is an indicator of this relationship. At a spruce and beech site, xylem sap flow measurements were applied to estimate canopy transpiration (Ec ) and canopy conductance (gc ). During the growing season of 2006, Ec at the spruce site (161 mm season-1) was significantly lower than at the beech site (182 mm season-1) while the total-year balances were similar. This was related to a period of soil drought during summer which was more pronounced at the spruce site than at the beech site. In contrast to beech, canopy conductance of spruce was reduced to minimal values independent of atmospheric conditions, and water-use efficiency was increased. From the findings it can be concluded that site conditions and tree species lead to measurable differences in the water balance of sites which should accordingly be expressed in water-balance models. The presented measured data are fundamental to value transpiration-related indicators of water-balance models.Für die Bewertung des Standortwasserhaushaltes sind die Anforderungen der Bestockung unter sich ändernden Umweltbedingungen mit zu berücksichtigen. Von den unterschiedlichen Wasserhaushaltskomponenten gibt die Bestandestranspiration die physiologische Reaktion der Bäume wider und steht somit auch dem Kohlenstoffhaushalt am nächsten. Eine regulierende und somit kritische Größe stellt die Bestandesleitfähigkeit dar, die zwischen Wasser- und Kohlenstoffhaushalt vermittelt. Als Indikator für diese Regulation wird das Verhältnis von Kohlenstoffaufnahme zu Wasserabgabe, die sog. Wassernutzungseffizienz, herangezogen. An einem Fichten- und Buchenstandort wurde mittels Xylemsaftflussmessungen die Bestandestranspiration (Ec) und -leitfähigkeit (gc) bestimmt. Von Mai bis Oktober 2006 lag Ec am Fichtenstandort (161 mm Saison-1) deutlich unter Ec von Buche mit 182 mm Saison-1 während die Gesamtjahresbilanz ähnlich war. Dies stand in Beziehung mit einer Phase sommerlicher Bodentrockenheit, die sich am Fichtenstandort deutlicher als am Buchenstandort auswirkte. Im Gegensatz zu Buche war während der Bodentrockenheit die Bestandesleitfähigkeit von Fichte, unabhängig von atmosphärischen Bedingungen, auf minimale Werte reduziert und die Wassernutzungseffizienz erhöht. Aus den Befunden kann gefolgert werden, dass Standortverhältnisse und Baumarten zu messbaren Unterschieden im Standortswasserhaushalt führen, die auch in Wasserhaushaltsmodellen darstellbar sein sollten. Die vorliegenden Messdaten sind grundlegend, um transpirationsbezogene Indikatoren von Wasserhaushaltsmodellen zu bewerten

    Regionaler Klimawandel in ländlichen Räumen – Modellgestützte Werkzeuge zur Ableitung von Anpassungsmaßnahmen: Regionaler Klimawandel in ländlichen Räumen – Modellgestützte Werkzeuge zur Ableitung von Anpassungsmaßnahmen

    Get PDF
    Anpassung an den Klimawandel erfordert Wissen über die potenziellen regionalen und lokalen Wirkungen von Klima und Wetterextremen. Auswirkungen des Klimawandels können die Landwirtschaft, abhängig von Witterung, Standortqualität, Landnutzung und -management, sowohl positiv als auch negativ beeinflussen. Dabei ist zu berücksichtigen, dass der Klimawandel sich einerseits direkt auf Funktionen von Agrarökosystemen auswirkt, andererseits aber auch Anpassungsmaßnahmen der Landwirtschaft Ökosystemdienstleistungen im ländlichen Raum beeinträchtigen können. Gefordert ist daher eine integrative Sicht der Wechselwirkungen. Aufgrund der komplexen Zusammenhänge muss die Bewertung zukünftiger Entwicklungen durch Simulationsmodelle unterstützt werden. Der Beitrag fasst Kenntnisse über den Einfluss des Klimawandels auf die Landwirtschaft zusammen und stellt beispielhaft modellgestützte Werkzeuge vor, die Auswirkungen des Klimawandels auf Agrarökosysteme simulieren und derzeit durch das Verbundvorhaben LandCaRe (Land, Climate and Resources) 2020 entwickelt werden.Adaptation to climate change requires knowledge of the potential regional and local impact of climate and weather extremes. The effects of climate change on agriculture may be positive or negative, depending on weather conditions, site quality, land use and management. It must be considered that, on the one hand, climate change will directly affect functions of agro-ecosystems, while on the other hand, adaptation measures in agriculture may influence ecosystem services in rural areas. Therefore, an integrative view of possible interactions is necessary. Given the complex interdependencies, the evaluation of future developments must be supported by simulation models. The paper summarises current knowledge on the influence of climate change on agriculture and presents the model-based instruments which being currently developed by the joint project “LandCaRe (Land, Climate and Resources) 2020” to simulate the impact of climate change on agroecosystems

    Wasserhaushalt von Wäldern : Editorial

    Get PDF
    Der heute vielerorts angestrebte naturnahe Waldbau setzt in hohem Maße auf biologische Automation (vgl. Gauer 2009). Grundlegend für eine solche Forstwirtschaft ist unter anderem die räumlich-differenzierte Erfassung und Bewertung wasserhaushaltsbezogener Standortsmerkmale. Denn erst die Kenntnis der Dynamik des pflanzenverfügbaren Bodenwasserangebotes oder auch eines möglichen Überschusses in Form von Stauwasser erlaubt eine standortsgerechte Baumartenwahl als Voraussetzung für eine nachhaltige Waldbewirtschaftung

    Modelling Age- and Density-Related Gas Exchange of Picea abies Canopies in the Fichtelgebirge, Germany

    Get PDF
    Differences in canopy exchange of water and carbon dioxide that occur due to changes in tree structure and density in montane Norway spruce stands of Central Germany were analyzed with a three dimensional microclimate and gas exchange model STANDFLUX. The model was used to calculate forest radiation absorption, the net photosynthesis and transpiration of single trees, and gas exchange of tree canopies. Model parameterizations were derived for six stands of Picea abies (L.) Karst. differing in age from 40 to 140 years and in density from 1680 to 320 trees per hectare. Parameterization included information on leaf area distribution from tree harvests, tree positions and tree sizes. Gas exchange was modelled using a single species-specific set of physiological parameters and assuming no influence of soil water availability. For our humid montane stands, these simplifying assumptions appeared to be acceptable. Comparisons of modelled daily tree transpiration with water use estimates from xylem sapflow measurements provided a test of the model. Estimates for canopy transpiration rate derived from the model and via xylem sapflow measurements agreed within ±\pm20%, especially at moderate to high air vapor pressure deficits. The results suggest that age and density dependent changes in canopy structure (changes in clumping of needles) and their effect on light exposure of the average needle lead to shifts in canopy conductance and determine tree canopy transpiration in these managed montane forests. Modelled canopy net photosynthesis rates are presented, but have not yet been verified at the canopy level

    Impact of soil and stand properties on soil water conditions

    Get PDF
    As an objective water balance classification is lacking for forest sites, efforts were made to develop a model-based site classification system taking into account the effects of relief, soil and stand type on soil water conditions. As a first step, this paper displays the results of a BROOK 90 application evaluating the influence of these three factors on soil water balance with a strong emphasis on drought conditions. Model runs have been carried out for four different soil types, four stand types and a meteorological input covering the range of typical forest sites in the Tharandt Forest as a testing area. Concepts of drought stress quantification help to point out the effects of stress on the sites. In drought years, deciduous trees and soils with limited water retention properties show the effects of drought stress more strongly. The effects of both soil and stand properties were of the same magnitude as the influence of the conventionally considered relief-based meteorological variation at the site.Die forstliche Standortklassifikation ist bundesweit uneinheitlich und bezüglich der Bewertung des Gesamtwasserhaushalts meist subjektiv. Um eine Vereinheitlichung zu erreichen, wird eine modellbasierte, objektive Klassifikation angestrebt, die neben der reliefbasierten meteorologischen Variabilität auch Bodenform und Bestockung einbezieht. In diesem Artikel werden die Ergebnisse vergleichender BROOK 90-Simulationen, die den Effekt unterschiedlicher Böden, Baumarten und Ausrichtungen im Gelände untersuchen, dargestellt und diskutiert. Der Schwerpunkt liegt dabei auf der Betrachtung von Wasserverfügbarkeit. Es wurden Parametrisierungen für vier verschiedene Bodenformen mit den Bestockungen Buche, Eiche, Fichte und Kiefer verwendet. Die reliefbedingten meteorologischen Standortcharakteristiken richten sich nach den lokalen Gegebenheiten des Testgebiets Tharandter Wald. Für das Konzept der Darstellung von Unterschieden hinsichtlich des Standortswasserhaushaltes wurden hierfür im Modell implementierte Stressindikatoren verwendet. Es zeigt sich, daß in Trockenjahren die Laubbäume höhere Stressindikatoren erreichen. Gleichfalls treten bei Böden mit geringerer Wasserretention erwartungsgemäß mehr Stress-tage auf. Bestockung und Bodeneigenschaften haben einen Einfluß auf Wasserknappheit in der Größenordnung wie die zur forstlichen Standortklassifikation verwendeten morphologischen Geländeeigenschaften

    Spatially differentiated modeling and evaluation of soil water conditions in forest sites of low mountain ranges

    Get PDF
    The forest hydrological model BROOK 90 was integrated into a GIS framework to calculate and evaluate soil water conditions in forest sites based on climate, topography, soil, and tree species. Model results are visualized in a novel forest site map using indicators for soil drought, soil water excess, and transpiration constraints. Based on knowledge of the number of days in which thresholds of these indicators were exceeded, an evaluation framework for soil water conditions was developed. The model was tested at the Tharandt Forest for an area with varying soil conditions and different tree species. Results can be used to derive and test new forest management strategies. For instance, recommendations for achieving optimum growth based on tree species or stand structure choices can be derived. Further research should focus on relating soil water indices with growth indices.Auf der Basis des forsthydrologischen Modells BROOK 90 wurde ein Modellsystem zur Berechnung und Beurteilung des Standortswasserhaushaltes in Abhängigkeit von Klima, Relief, Boden und Bestockung entwickelt. Implementierte Indikatoren zur Ausschöpfung des Bodenwasservorrates, der Einschränkung der Transpiration und des Auftretens von Staunässe erlauben eine Visualisierung der Modellergebnisse in Form neuartiger Standortskarten. Basierend auf der Kenntnis der Unterschreitungshäufigkeiten von Schwellenwerten dieser Indikatoren wurde ein fünfstufiger Bewertungsrahmen für den Wasserhaushalt aufgestellt. Das Modell wurde im Tharandter Wald für ein Gebiet mit variierenden Böden und unterschiedlicher Bestockung (Buche, Eiche, Fichte und Kiefer) getestet. Die Ergebnisse zeigen, dass diese Vorgehensweise eine differenzierte Informationsgrundlage für die forstliche Planung liefert. Beispielsweise können Entscheidungen zu Baumartenwahl und Bestandesstruktur abgeleitet werden. Forschungsbedarf besteht vor allem in der Verknüpfung der im Modell implementierten Indikatoren des Wasserhaushaltes mit Wachstumsparametern und physiologisch definierten Schwellenwerten

    Micrometeorological, plant-ecological, and soil-hydrological measurements in stands of spruce and beech in the Tharandt forest

    Get PDF
    This paper addresses micrometeorological, plant-ecological, and soil-hydrological measurements in stands of spruce and beech as a means to understand the processes. The long-term flux site Anchor Station Tharandt (dominated by 120-year-old spruce) shows the high dynamics of land surface- atmosphere interactions as well as the climatologically relevant effects on turbulent energy flux partitioning, carbon sequestration, and evapotranspiration (ET). Climate, phenology, and fluxes support the idea of dividing the year into an ‘active phase’ (April–September) and a ‘dormant phase’ (October–March); carbon sequestration, available energy (net radiation), and sensible heat flux are almost negligible in the dormant season. Only ET shows a significant contribution to the annual budget (25 % of the active phase) from interception (evaporation from wetted needles) driven by sensible heat flux from the atmosphere. The interannual variation of the fluxes is generally small (e. g., 500 to 650 gC m-2 yr-1 of C uptake) even for the severe drought year of 2003 (400 gC m-2) or with thinning in 2002. Compared to the beech site, the spruce site – at least in the active season – experienced similar rates of ET but smaller rates of C uptake. Canopy drip was 55 % of precipitation at the spruce site. Canopy drip (40 %) and stem flow (25 %) added up to 65 % of canopy precipitation at the beech site. This difference likely explains the generally higher soil moisture at the beech site. As a consequence of this study, models with sufficient complexity are recommended to represent the structural differences of different forest types including their phenophases. For a better representation of forests, e. g., in climate models, land surface–atmosphere interactions must be included.Diese Arbeit benutzt mikrometeorologische, pflanzenökologische und bodenhydrologische Messungen als Mittel zum Prozessverständnis. Der langfristige Flussmessstandort Ankerstation Tharandter Wald (von 120 jährigen Fichten dominiert) zeigt die große Dynamik der Landoberflächen-Atmosphären-Wechselwirkungen wie auch ihre Klimaeffekte auf die Verteilung der turbulenten Wärmeströme, die Kohlenstoffsequestrierung und die Evapotranspiration (ET). Klimawerte, Phänologie und Flüsse unterstützen die Einteilung des Jahres in eine ‚aktive Phase’ (April–September) und eine ‚Ruhephase’ (Oktober– März): Kohlenstoffsequestrierung, zur Verfügung stehende Energie (Strahlungsbilanz) und fühlbarer Wärmestrom sind in der Ruhephase praktisch vernachlässigbar. Nur ET zeigt einen signifikanten Beitrag zur Jahresbilanz (25 % der aktiven Phase) aus der Interzeption (Evaporation von benetzten Nadeln), die vom fühlbaren Wärmestrom aus der Atmosphäre angetrieben wird. Die zwischenjährliche Variation der Flüsse ist im Allgemeinen klein (z. B. 500–650 gC m-2 yr -1) C-Aufnahme), selbst mit dem starken Dürrejahr 2003 (400 gC m-2) oder dem Effekt der Durchforstung 2002. Verglichen mit der Buche erreicht die Fichte – zumindest in der aktiven Periode – ähnliche Werte von ET aber niedrigere bei der C-Aufnahme. Die Kronentraufe beträgt bei der Fichte nur ca. 55 % des Niederschlages, bei der Buche summieren sich ca. 40 % Kronentraufe und knapp 25 % Stammabfluss zu etwa 65 % Bestandesniederschlag. Dieser Unterschied erklärt möglicherweise die im Allgemeinen höhere Bodenfeuchte am Buchenstandort. Als Resultat aus dieser Arbeit werden Modelle mit ausreichender Komplexität empfohlen, welche Bestandesstruktur und Phänophasen berücksichtigen. Das ist eine Voraussetzung für eine bessere Berücksichtigung von Wäldern mit ihren Landoberflächen- Atmosphären-Wechselwirkungen, z. B. in Klimamodellen

    Klimawandel und Ertragsleistung - Auswirkungen des Klimawandels auf die Ertragsleistung ausgewählter landwirtschaftlicher Fruchtarten im Freistaat Sachsen

    Get PDF
    Der Klimawandel wird künftig die landwirtschaftlichen Erträge beeinflussen. Die Studie schätzt die Auswirkungen der projizierten Klimaänderungen auf die Entwicklung der Erträge von Winterweizen, Winterroggen, Wintergerste, Winterraps und Silomais ab. Die Auswertungen erfolgten mit den statistisch orientierten Modell YIELDSTAT für den Zeitraum bis 2050 auf der Grundlage des Klimaszenarios WEREX IV A1B. Unter pessimistischen Annahmen sind durchgängig leichte Ertragseinbußen bis 2050 zu erwarten. Allerdings sind weder CO2-Düngungseffekte noch der wissenschaftlich-technischen Fortschritt hierbei berücksichtigt worden. Dagegen kann bei optimistischen Betrachtungen von einer weiteren Ertragssteigerung vor allem bei Wintergetreide und Winterraps gerechnet werden. Das Regionalmodell WEREX IV projiziert eine vergleichsweise moderate Klimaänderung bis 2050. Mit einer stärkeren Ertragsbeeinflussung, insbesondere auf den leichten, diluvialen Standorten, ist dann zu rechnen, wenn sich das künftige Klima schneller und extremer verändert als gegenwärtig mit WEREX IV berechnet wurde. Infolge zunehmender Extremereignisse wird die Ertragsstabilität künftig abnehmen
    corecore