2,015 research outputs found
A Python based automated tracking routine for myosin II filaments
The study of motor protein dynamics within cytoskeletal networks is of high interest to physicists and biologists to understand how the dynamics and properties of individual motors lead to cooperative effects and control of overall network behaviour. Here, we report a method to detect and track muscular myosin II filaments within an actin network tethered to supported lipid bilayers. Based on the characteristic shape of myosin II filaments, this automated tracking routine allowed us to follow the position and orientation of myosin II filaments over time, and to reliably classify their dynamics into segments of diffusive and processive motion based on the analysis of displacements and angular changes between time steps. This automated, high throughput method will allow scientists to efficiently analyse motor dynamics in different conditions, and will grant access to more detailed information than provided by common tracking methods, without any need for time consuming manual tracking or generation of kymographs
Effect of Age and Food Novelty on Food Memory
The influence of age of the consumer and food novelty on incidentally learned food memory was investigated by providing a meal containing novel and familiar target items under the pretense of a study on hunger feelings to 34 young and 36 older participants in France and to 24 young and 20 older participants in Denmark and testing them a day later on recognition of the targets among a set of distractors that were variations of the target made by adding or subtracting taste (sour or sweet) or aroma (orange or red berry flavor). Memory was also tested by asking participants to indicate whether the target and the distractors were equal to or less or more intense than the remembered target in sourness sweetness and aroma. The results showed that when novelty is defined as whether people know or not a given product, it has a strong influence on memory performance, but that age did not, the elderly performing just as well as the young. The change in the distractors was more readily detected with familiar than with novel targets where the participants were still confused by the target itself. Special attention is given to the influence of the incidental learning paradigm on the outcome and to the ways in which it differs from traditional recognition experiments
Local Nature of Coset Models
The local algebras of the maximal Coset model C_max associated with a chiral
conformal subtheory A\subset B are shown to coincide with the local relative
commutants of A in B, provided A contains a stress energy tensor.
Making the same assumption, the adjoint action of the unique
inner-implementing representation U^A associated with A\subset B on the local
observables in B is found to define net-endomorphisms of B. This property is
exploited for constructing from B a conformally covariant holographic image in
1+1 dimensions which proves useful as a geometric picture for the joint
inclusion A\vee C_max \subset B.
Immediate applications to the analysis of current subalgebras are given and
the relation to normal canonical tensor product subfactors is clarified. A
natural converse of Borchers' theorem on half-sided translations is made
accessible.Comment: 33 pages, no figures; typos, minor improvement
Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints
We consider an inextensible, semiflexible polymer or worm-like chain which is
confined in the transverse direction by a parabolic potential and subject to a
longitudinal force at the ends, so that the polymer is stretched out and
backfolding is negligible. Simple analytic expressions for the partition
function, valid in this regime, are obtained for chains of arbitrary length
with a variety of boundary conditions at the ends. The spatial distribution of
the end points or radial distribution function is also analyzed.Comment: 14 pages including figure
Structure of self-assembled Mn atom chains on Si(001)
Mn has been found to self-assemble into atomic chains running perpendicular
to the surface dimer reconstruction on Si(001). They differ from other atomic
chains by a striking asymmetric appearance in filled state scanning tunneling
microscopy (STM) images. This has prompted complicated structural models
involving up to three Mn atoms per chain unit. Combining STM, atomic force
microscopy and density functional theory we find that a simple necklace-like
chain of single Mn atoms reproduces all their prominent features, including
their asymmetry not captured by current models. The upshot is a remarkably
simpler structure for modelling the electronic and magnetic properties of Mn
atom chains on Si(001).Comment: 5 pages, 4 figure
Myosin II filament dynamics in actin networks revealed with interferometric scattering microscopy
The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood due to difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering (iSCAT) microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane. Using the magnitude of the interferometric contrast, which is proportional to molecular mass, and fast acquisition rates, we detect, and image individual membrane attached actin filaments diffusing within the acto-myosin network and follow individual myosin II filament dynamics. We quantify myosin II filament dwell times and processivity as functions of ATP concentration, providing experimental evidence for the predicted ensemble behavior of myosin head domains. Our results show how decreasing ATP concentrations lead to both increasing dwell times of individual myosin II filaments and a global change from a remodeling to a contractile state of the acto-myosin network
Mechanics of individual keratin bundles in living cells
AbstractAlong with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed
Radial Distribution Function for Semiflexible Polymers Confined in Microchannels
An analytic expression is derived for the distribution of the
end-to-end distance of semiflexible polymers in external potentials
to elucidate the effect of confinement on the mechanical and statistical
properties of biomolecules. For parabolic confinement the result is exact
whereas for realistic potentials a self-consistent ansatz is developed, so that
is given explicitly even for hard wall confinement. The
theoretical result is in excellent quantitative agreement with fluorescence
microscopy data for actin filaments confined in rectangularly shaped
microchannels. This allows an unambiguous determination of persistence length
and the dependence of statistical properties such as Odijk's deflection
length on the channel width . It is shown that neglecting the
effect of confinement leads to a significant overestimation of bending
rigidities for filaments
Endotaxial Si nanolines in Si(001):H
We present a detailed study of the structural and electronic properties of a
self-assembled silicon nanoline embedded in the H-terminated silicon (001)
surface, known as the Haiku stripe. The nanoline is a perfectly straight and
defect free endotaxial structure of huge aspect ratio; it can grow micrometre
long at a constant width of exactly four Si dimers (1.54nm). Another remarkable
property is its capacity to be exposed to air without suffering any
degradation. The nanoline grows independently of any step edges at tunable
densities, from isolated nanolines to a dense array of nanolines. In addition
to these unique structural characteristics, scanning tunnelling microscopy and
density functional theory reveal a one-dimensional state confined along the
Haiku core. This nanoline is a promising candidate for the long sought after
electronic solid-state one-dimensional model system to explore the fascinating
quantum properties emerging in such reduced dimensionality.Comment: 8 pages, 6 figure
Radioactive ion beams produced by neutron-induced fission at ISOLDE
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN, tests have been made on standard ISOLDE actinide targets using fast neutron bunches produced by bombarding thick, high-Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project, the results are compared to simulations, using the MARS code interfaced with MCNP libraries, of the neutron flux from the converters interacting with the actinide targets
- …