39 research outputs found

    Perovskite CIGS Tandem Solar Cells From Certified 24.2 toward 30 and Beyond

    Get PDF
    We demonstrate a monolithic perovskite CIGS tandem solar cell with a certified power conversion efficiency PCE of 24.2 . The tandem solar cell still exhibits photocurrent mismatch between the subcells; thus optical simulations are used to determine the optimal device stack. Results reveal a high optical potential with the optimized device reaching a short circuit current density of 19.9 mA cm 2 and 32 PCE based on semiempirical material properties. To evaluate its energy yield, we first determine the CIGS temperature coefficient, which is at amp; 8722;0.38 K 1 notably higher than the one from the perovskite subcell amp; 8722;0.22 K 1 , favoring perovskite in the field operation at elevated cell temperatures. Both single junction cells, however, are significantly outperformed by the combined tandem device. The enhancement in energy output is more than 50 in the case of CIGS single junction device. The results demonstrate the high potential of perovskite CIGS tandem solar cells, for which we describe optical guidelines toward 30 PC

    Proton Radiation Hardness of Perovskite Tandem Photovoltaics.

    Get PDF
    Monolithic [Cs0.05(MA0. 17FA0. 83)0.95]Pb(I0.83Br0.17)3/Cu(In,Ga)Se2 (perovskite/CIGS) tandem solar cells promise high performance and can be processed on flexible substrates, enabling cost-efficient and ultra-lightweight space photovoltaics with power-to-weight and power-to-cost ratios surpassing those of state-of-the-art III-V semiconductor-based multijunctions. However, to become a viable space technology, the full tandem stack must withstand the harsh radiation environments in space. Here, we design tailored operando and ex situ measurements to show that perovskite/CIGS cells retain over 85% of their initial efficiency even after 68 MeV proton irradiation at a dose of 2 × 1012 p+/cm2. We use photoluminescence microscopy to show that the local quasi-Fermi-level splitting of the perovskite top cell is unaffected. We identify that the efficiency losses arise primarily from increased recombination in the CIGS bottom cell and the nickel-oxide-based recombination contact. These results are corroborated by measurements of monolithic perovskite/silicon-heterojunction cells, which severely degrade to 1% of their initial efficiency due to radiation-induced recombination centers in silicon.F.L. acknowledges financial support from the Alexander von Humboldt Foundation via the Feodor Lynen program and thanks Prof. Sir R. Friend for supporting his Fellowship at the Cavendish Laboratory. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement number 756962). M.J, A.A.A., E.K., and S.A. acknowledge financial support from the German Federal Ministry of Education and Research (BMBF) via program “Materialforschung für die Energiewende” (grant no. 03SF0540), by the German Federal Ministry for Economic Affairs and Energy (BMWi) through the ‘PersiST’ project (Grant No. 0324037C). T.B. C.A.K. and R.S. acknowledge funding by BMWi through the speedCIGS (grant no. 0324095E) and EFFCIS project (grant no. 0324076D). D.K. and M.C. acknowledge financial support from the Dutch Ministry of Economic Affairs, via The Top-consortia Knowledge and Innovation (TKI) Program ‘‘Photovoltaic modules based on a p-i-n stack, manufactured on a roll-to-roll line featuring high efficiency, stability and strong market perspective’’ (PVPRESS) (TEUE118010) and “Bridging the voltage gap” (BRIGHT) (1721101). K. F. acknowledges the George and Lilian Schiff Fund, the Engineering and Physical Sciences Research Council (EPSRC), the Winton Sustainability Fellowship, and the Cambridge Trust for funding. S.D.S. acknowledges the Royal Society and Tata Group (UF150033). The authors acknowledge the EPSRC for funding (EP/R023980/1). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 841265. A.R.B. acknowledges funding from a Winton Studentship, Oppenheimer Studentship, and funding from the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Centre in Photovoltaics (CDT-PV). K.G. acknowledges the Polish Ministry of Science and Higher Education within the Mobilnosc Plus program (Grant No. 1603/MOB/V/2017/0)

    Textured interfaces in monolithic perovskite silicon tandem solar cells advanced light management for improved efficiency and energy yield

    Get PDF
    Efficient light management in monolithic perovskite silicon tandem solar cells is one of the prerequisites for achieving high power conversion efficiencies PCEs . Textured silicon wafers can be utilized for light management, however, this is typically not compatible with perovskite solution processing. Here, we instead employ a textured light management LM foil on the front side of a tandem solar cell processed on a wafer with planar front side and textured back side. This way the PCE of monolithic, 2 terminal perovskite silicon heterojunction tandem solar cells is significantly improved from 23.4 to 25.5 . Furthermore, we validate an advanced numerical model for our fabricated device and use it to optically optimize a number of device designs with textures at different interface with respect to the PCE and energy yield. These simulations predict a slightly lower optimal bandgap of the perovskite top cell in a textured device as compared to a flat one and demonstrate strong interdependency between the bandgap and the texture position in the monolithic stack. We estimate the PCE potential for the best performing both side textured device to be 32.5 for a perovskite bandgap of 1.66 eV. Furthermore, the results show that under perpendicular illumination conditions, for optimized designs, the LM foil on top of the cell performs only slightly better than a flat anti reflective coating. However, under diffuse illumination, the benefits of the LM foil are much greater. Finally, we calculate the energy yield for the different device designs, based on true weather data for three different locations throughout the year, taking direct as well as diffuse illumination fully into account. The results further confirm the benefits of front side texture, even more for BIPV applications. Overall, devices built on a both side textured silicon wafer perform best. However, we show that devices with textured LM foils on the cell s front side are a highly efficient alternativ

    21.6%-efficient monolithic perovskite/Cu(In,Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces

    Get PDF
    Perovskite-based tandem solar cells can increase the power conversion efficiency (PCE) of conventional single-junction photovoltaic devices. Here, we present monolithic perovskite/CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as-grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx/perovskite interface. This hole transport bilayer enables a 21.6% stabilized PCE of the tandem device at ∼0.8 cm2 active area. We use TEM/EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine-tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite/CIGSe tandems toward predicted PCE estimates above 30%.BMBF, 03SF0540, Nachwuchsgruppe MeSa-Zuma: Entwicklung von spektral optimierten, hocheffizienten und langzeitstabilen Perowskit/Silizium Tandem SolarzellenBMWi, 0324095D, Verbundvorhaben: speedCIGS - Rechnerunterstützte Optimierung des CIGS-Depositionsprozesses in der industriellen Umsetzung; Teilvorhaben: Alkalibehandlung der CIGS Absorberoberfläche und monolithisch integrierte Tandem Zelle (p-TCM)BMWi, 0324076D, Verbundvorhaben: EFFCIS - Effizienzoptimierung von CIS-basierten Dünnschichtsolarzellen und -modulen; Teilvorhaben: Elektronenstrukturrechnungen zum Einfluss von Puffermaterialien auf die Eigenschaften des Cu(ln,Ga)(S,Se)2 Absorber

    27.9 Efficient Monolithic Perovskite Silicon Tandem Solar Cells on Industry Compatible Bottom Cells

    Get PDF
    Monolithic perovskite silicon tandem solar cells recently surpass the efficiency of silicon single junction solar cells. Most tandem cells utilize gt;250 amp; 8201; amp; 956;m thick, planarized float zone FZ silicon, which is not compatible with commercial production using lt;200 amp; 8201; amp; 956;m thick Czochralski CZ silicon. The perovskite silicon tandem cells based on industrially relevant 100 amp; 8201; amp; 956;m thick CZ silicon without mechanical planarization are demonstrated. The best power conversion efficiency PCE of 27.9 is only marginally below the 28.2 reference value obtained on the commonly used front side polished FZ Si, which are about three times thicker. With both wafer types showing the same median PCE of 27.8 , the thin CZ Si based devices are preferred for economic reasons. To investigate perspectives for improved current matching and, therefore, further efficiency improvement, optical simulations with planar and textured silicon have been conducted the perovskite s bandgap needs to be increased by amp; 8776;0.02 amp; 8201;eV when reducing the silicon thickness from 280 to 100 amp; 8201; amp; 956;m. The need for bandgap enlargement has a strong impact on future tandem developments ensuring photostable compositions with lossless interfaces at bandgaps around or above 1.7 amp; 8201;e

    21.6 efficient Monolithic Perovskite Cu In,Ga Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces

    Get PDF
    Perovskite based tandem solar cells can increase the power conversion efficiency PCE of conventional single junction photovoltaic devices. Here, we present monolithic perovskite CIGSe tandem solar cells with a perovskite top cell fabricated directly on an as grown, rough CIGSe bottom cell. To prevent potential shunting due to the rough CIGSe surface, a thin NiOx layer is conformally deposited via atomic layer deposition on the front contact of the CIGSe bottom cell. The performance is further improved by an additional layer of the polymer PTAA at the NiOx perovskite interface. This hole transport bilayer enables a 21.6 stabilized PCE of the tandem device at amp; 8764;0.8 cm2 active area. We use TEM EDX measurements to investigate the deposition uniformity and conformality of the NiOx and PTAA layers. By absolute photoluminescence measurements, the contribution of the individual subcells to the tandem VOC is determined, revealing that further fine tuning of the recombination layers might improve the tandem VOC. Finally, on the basis of the obtained results, we give guidelines to improve monolithic perovskite CIGSe tandems toward predicted PCE estimates above 3

    Determining Structure Activity Relationships in Oxide Derived Cu Sn Catalysts During CO2 Electroreduction Using X Ray Spectroscopy

    Get PDF
    The development of earth abundant catalysts for selective electrochemical CO2 conversion is a central challenge. Cu amp; 63743;Sn bimetallic catalysts can yield selective CO2 reduction toward either CO or formate. This study presents oxide derived Cu amp; 63743;Sn catalysts tunable for either product and seeks to understand the synergetic effects between Cu and Sn causing these selectivity trends. The materials undergo significant transformations under CO2 reduction conditions, and their dynamic bulk and surface structures are revealed by correlating observations from multiple methods X ray absorption spectroscopy for in situ study, and quasi in situ X ray photoelectron spectroscopy for surface sensitivity. For both types of catalysts, Cu transforms to metallic Cu0 under reaction conditions. However, the Sn speciation and content differ significantly between the catalyst types the CO selective catalysts exhibit a surface Sn content of 13 at. predominantly present as oxidized Sn, while the formate selective catalysts display an Sn content of amp; 8776;70 at. consisting of both metallic Sn0 and Sn oxide species. Density functional theory simulations suggest that Sn amp; 948; sites weaken CO adsorption, thereby enhancing CO selectivity, while Sn0 sites hinder H adsorption and promote formate production. This study reveals the complex dependence of catalyst structure, composition, and speciation with electrochemical bias in bimetallic Cu catalyst

    Slot Die Coated Triple Halide Perovskites for Efficient and Scalable Perovskite Silicon Tandem Solar Cells

    Get PDF
    Wide bandgap halide perovskite materials show promising potential to pair with silicon bottom cells. To date, most efficient wide bandgap perovskites layers are fabricated by spin coating, which is difficult to scale up. Here, we report on slot die coating for an efficient, 1.68 eV wide bandgap triple halide 3halide perovskite absorber, Cs0.22FA0.78 Pb I0.85Br0.15 3 5 mol MAPbCl3. A suitable solvent system is designed specifically for the slot die coating technique. We demonstrate that our fabrication route is suitable for tandem solar cells without phase segregation. The slot die coated wet halide perovskite is dried by a nitrogen N2 knife with high reproducibility and avoiding antisolvents. We explore varying annealing conditions and identify parameters allowing crystallization of the perovskite film into large grains reducing charge collection losses and enabling higher current density. At 150 C, an optimized trade off between crystallization and the PbI2 aggregates on the film s top surface is found. Thus, we improve the cell stability and performance of both single junction cells and tandems. Combining the 3halide top cells with a 120 amp; 956;m thin saw damage etched commercial Czochralski industrial wafer, a 2 terminal monolithic tandem solar cell with a PCE of 25.2 on a 1 cm2 active area is demonstrated with fully scalable processe

    Subcell Operation and Long Term Stability Analysis of Perovskite Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source

    Get PDF
    In monolithic tandem solar cells, current voltage J V characteristics of subcells provide invaluable information about their quality and tandem operation. However, accessing the subcell J Vs is challenging and requires sophisticated spectral methods. Herein, a customized, bichromatic light emitting diode setup BCLED for in depth analysis of tandem solar cells, suitable for subcell operation analysis, and long term stability testing is presented. For this, two spectrally independent LED arrays are used to selectively bias the two subcells. The power of the developed setup is demonstrated by successfully disentangling the tandem J V curve into subcell J V curves. The method is based on a one diode model for each subcell and is validated by electrical simulations. Afterward, it is used on a fabricated 27.6 efficient perovskite silicon tandem device, resulting in great agreement with the measured J V curve. Therefore, the BCLED setup is a versatile tool, suitable for subcell characteristics and long term stability analysis of tandem solar cell

    Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction

    Get PDF
    Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.BMBF, 03SF0540, Nachwuchsgruppe MeSa-Zuma: Entwicklung von spektral optimierten, hocheffizienten und langzeitstabilen Perowskit/Silizium Tandem SolarzellenBMWi, 0324288C, Verbundvorhaben: ProTandem - Demonstration der Produktionstauglichkeit von Perowskit-Silizium Tandemsolarzellen; Teilvorhaben: Entwicklung von Kontaktschichten für die Silizium-Heterojunction BottomzelleEC/H2020/763977/EU/Perovskite Thin-film Photovoltaics (PERTPV)/PERTPVDFG, 423749265, Identifizierung und Unterdrückung von Grenzflächenrekombination für hocheffiziente Perowskit-SolarzellenDFG, 402726906, SPP 2196: Perowskit-Halbleiter: Von fundamentalen Eigenschaften zur Anwendun
    corecore