661 research outputs found
Kinetic simulations of X-B and O-X-B mode conversion
We have performed fully-kinetic simulations of X-B and O-X-B mode conversion
in one and two dimensional setups using the PIC code EPOCH. We have recovered
the linear dispersion relation for electron Bernstein waves by employing
relatively low amplitude incoming waves. The setups presented here can be used
to study non-linear regimes of X-B and O-X-B mode conversion.Comment: 4 pages, 3 figure
Individualized Template MRI Is a Valid and Reliable Alternative to Individual MRI for Spatial Tracking in Navigated TMS Studies in Healthy Subjects
Objectives: Navigated transcranial magnetic stimulation (nTMS) provides significant benefits over classic TMS. Yet, the acquisition of individual structural magnetic resonance images (MRIindividual) is a time-consuming, expensive, and not feasible prerequisite in all subjects for spatial tracking and anatomical guidance in nTMS studies. We hypothesize that spatial transformation can be used to adjust MRI templates to individual head shapes (MRIwarped) and that TMS parameters do not differ between nTMS using MRIindividual or MRIwarped.
Materials and Methods: Twenty identical TMS sessions, each including four different navigation conditions, were conducted in 10 healthy subjects (one female, 27.4 ± 3.8 years), i.e., twice per subject by two researchers to additionally assess interrater reliabilities. MRIindividual were acquired for all subjects. MRIwarped were obtained through the spatial transformation of a template MRI following a 5-, 9-and 36-point head surface registration (MRIwarped_5, MRIwarped_9, MRIwarped_36). Stimulation hotspot locations, resting motor threshold (RMT), 500 μV motor threshold (500 μV-MT), and mean absolute motor evoked potential difference (MAD) of primary motor cortex (M1) examinations were compared between nTMS using either MRIwarped variants or MRIindividual and non-navigated TMS.
Results: M1 hotspots were spatially consistent between MRIindividual and MRIwarped_36 (insignificant deviation by 4.79 ± 2.62 mm). MEP thresholds and variance were also equivalent between MRIindividual and MRIwarped_36 with mean differences of RMT by -0.05 ± 2.28% maximum stimulator output (%MSO; t (19) = -0.09, p = 0.923), 500 μV-MT by -0.15 ± 1.63%MSO (t (19) = -0.41, p = 0.686) and MAD by 70.5 ± 214.38 μV (t (19) = 1.47, p = 0.158). Intraclass correlations (ICC) of motor thresholds were between 0.88 and 0.97.
Conclusions: NTMS examinations of M1 yield equivalent topographical and functional results using MRIindividual and MRIwarped if a sufficient number of registration points are used
Validation of GBS plasma turbulence simulation of the TJ-K stellarator
We present a validation of a three-dimensional, two-fluid simulation of
plasma turbulence in the TJ-K stellarator, a low temperature plasma experiment
ideally suited for turbulence measurements. The simulation is carried out by
the GBS code, recently adapted to simulate 3D magnetic fields. The comparison
shows that GBS retrieves the main turbulence properties observed in the device,
namely the fact that transport is dominated by fluctuations with low poloidal
mode number. The poloidal dependence of the radial
turbulent flux is compared on a poloidal plane with elliptical flux surfaces,
where a very good agreement between experiment and simulation is observed, and
on another with triangular flux surfaces, which shows a poorer comparison. The
fluctuation levels in both cases are underestimated in the simulations. The
equilibrium density profile is well retrieved by the simulation, while the
electron temperature and the electrostatic potential profiles, which are very
sensitive to the strength and localization of the sources, do not agree well
with the experimental measurements
- …