5,306 research outputs found
Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling
A distance labeling scheme is an assignment of bit-labels to the vertices of
an undirected, unweighted graph such that the distance between any pair of
vertices can be decoded solely from their labels. An important class of
distance labeling schemes is that of hub labelings, where a node
stores its distance to the so-called hubs , chosen so that for
any there is belonging to some shortest
path. Notice that for most existing graph classes, the best distance labelling
constructions existing use at some point a hub labeling scheme at least as a
key building block. Our interest lies in hub labelings of sparse graphs, i.e.,
those with , for which we show a lowerbound of
for the average size of the hubsets.
Additionally, we show a hub-labeling construction for sparse graphs of average
size for some , where is the
so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced
matchings in dense graphs. This implies that further improving the lower bound
on hub labeling size to would require a
breakthrough in the study of lower bounds on , which have resisted
substantial improvement in the last 70 years. For general distance labeling of
sparse graphs, we show a lowerbound of , where is the communication complexity of the
Sum-Index problem over . Our results suggest that the best achievable
hub-label size and distance-label size in sparse graphs may be
for some
Shortest Path Computation with No Information Leakage
Shortest path computation is one of the most common queries in location-based
services (LBSs). Although particularly useful, such queries raise serious
privacy concerns. Exposing to a (potentially untrusted) LBS the client's
position and her destination may reveal personal information, such as social
habits, health condition, shopping preferences, lifestyle choices, etc. The
only existing method for privacy-preserving shortest path computation follows
the obfuscation paradigm; it prevents the LBS from inferring the source and
destination of the query with a probability higher than a threshold. This
implies, however, that the LBS still deduces some information (albeit not
exact) about the client's location and her destination. In this paper we aim at
strong privacy, where the adversary learns nothing about the shortest path
query. We achieve this via established private information retrieval
techniques, which we treat as black-box building blocks. Experiments on real,
large-scale road networks assess the practicality of our schemes.Comment: VLDB201
SPIRE-FTS observations of RCW 120
The expansion of Galactic HII regions can trigger the formation of a new
generation of stars. However, little is know about the physical conditions that
prevail in these regions. We study the physical conditions that prevail in
specific zones towards expanding HII regions that trace representative media
such as the photodissociation region, the ionized region, and condensations
with and without ongoing star formation. We use the SPIRE Fourier Transform
Spectrometer (FTS) on board to observe the HII region RCW 120.
Continuum and lines are observed in the m range. Line intensities
and line ratios are obtained and used as physical diagnostics of the gas. We
used the Meudon PDR code and the RADEX code to derive the gas density and the
radiation field at nine distinct positions including the PDR surface and
regions with and without star-formation activity. For the different regions we
detect the atomic lines [NII] at m and [CI] at and m,
the ladder between the and levels and the
ladder between the and levels, as well as CH in absorption. We find gas temperatures in the range K for
densities of , and a high column density on the order
of that is in agreement with dust
analysis. The ubiquitousness of the atomic and CH emission suggests the
presence of a low-density PDR throughout RCW 120. High-excitation lines of CO
indicate the presence of irradiated dense structures or small dense clumps
containing young stellar objects, while we also find a less dense medium
() with high temperatures (K).Comment: 11 pages, 11 figures, accepted by A&
Particle production in quantum transport theories
The particle production in the intermediate energy heavy ion collisions is
discussed in the framework of the nonequilibrium Green's functions formalism.
The evolution equations of the Green's functions for fermions allows for the
discussion of the off-shell fermion propagator and of the large momentum
component in the initial state. For the case of a homogeneous system numerical
calculations of the meson production rate are performed and compared with the
semiclassical production rate.Comment: 45 pages, figures included, uses FEYNMAN macro
Binaries in star clusters and the origin of the field stellar population
Many, possibly most, stars form in binary and higher-order multiple systems.
Therefore, the properties and frequency of binary systems provide strong clues
to the star-formation process, and constraints on star-formation models.
However, the majority of stars also form in star clusters in which the birth
binary properties and frequency can be altered rapidly by dynamical processing.
Thus, we almost never see the birth population, which makes it very difficult
to know if star formation (as traced by binaries, at least) is universal, or if
it depends on environment. In addition, the field population consists of a
mixture of systems from different clusters which have all been processed in
different ways.Comment: 16 pages, no figures. To appear as invited review article in a
special issue of the Phil. Trans. Royal Soc. A: Ch. 8 "Star clusters as
tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer
reviewed. LaTeX, requires rspublic.cls style fil
Towards a fully self-consistent spectral function of the nucleon in nuclear matter
We present a calculation of nuclear matter which goes beyond the usual
quasi-particle approximation in that it includes part of the off-shell
dependence of the self-energy in the self-consistent solution of the
single-particle spectrum. The spectral function is separated in contributions
for energies above and below the chemical potential. For holes we approximate
the spectral function for energies below the chemical potential by a
-function at the quasi-particle peak and retain the standard form for
energies above the chemical potential. For particles a similar procedure is
followed. The approximated spectral function is consistently used at all levels
of the calculation. Results for a model calculation are presented, the main
conclusion is that although several observables are affected by the inclusion
of the continuum contributions the physical consistency of the model does not
improve with the improved self-consistency of the solution method. This in
contrast to expectations based on the crucial role of self-consistency in the
proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.
A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature
The properties of symmetric nuclear matter are investigated within the
Green's functions approach. We have implemented an iterative procedure allowing
for a self-consistent evaluation of the single-particle and two-particle
propagators. The in-medium scattering equation is solved for a realistic
(non-separable) nucleon-nucleon interaction including both particle-particle
and hole-hole propagation. The corresponding two-particle propagator is
constructed explicitely from the single-particle spectral functions. Results
are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
- …