7,772 research outputs found
Rapid changes in ice core gas records Part 2: Understanding the rapid rise in atmospheric CO2 at the onset of the Bølling/Allerød
During the last glacial/interglacial transition the Earth's climate underwent rapid changes around 14.6 kyr ago. Temperature proxies from ice cores revealed the onset of the Bølling/Allerød (B/A) warm period in the north and the start of the Antarctic Cold Reversal in the south. Furthermore, the B/A is accompanied by a rapid sea level rise of about 20 m during meltwater pulse (MWP) 1A, whose exact timing is matter of current debate. In situ measured CO<sub>2</sub> in the EPICA Dome C (EDC) ice core also revealed a remarkable jump of 10±1 ppmv in 230 yr at the same time. Allowing for the age distribution of CO<sub>2</sub> in firn we here show, that atmospheric CO<sub>2</sub> rose by 20–35 ppmv in less than 200 yr, which is a factor of 2–3.5 larger than the CO<sub>2</sub> signal recorded in situ in EDC. Based on the estimated airborne fraction of 0.17 of CO<sub>2</sub> we infer that 125 Pg of carbon need to be released to the atmosphere to produce such a peak. Most of the carbon might have been activated as consequence of continental shelf flooding during MWP-1A. This impact of rapid sea level rise on atmospheric CO<sub>2</sub> distinguishes the B/A from other Dansgaard/Oeschger events of the last 60 kyr, potentially defining the point of no return during the last deglaciation
Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling
A distance labeling scheme is an assignment of bit-labels to the vertices of
an undirected, unweighted graph such that the distance between any pair of
vertices can be decoded solely from their labels. An important class of
distance labeling schemes is that of hub labelings, where a node
stores its distance to the so-called hubs , chosen so that for
any there is belonging to some shortest
path. Notice that for most existing graph classes, the best distance labelling
constructions existing use at some point a hub labeling scheme at least as a
key building block. Our interest lies in hub labelings of sparse graphs, i.e.,
those with , for which we show a lowerbound of
for the average size of the hubsets.
Additionally, we show a hub-labeling construction for sparse graphs of average
size for some , where is the
so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced
matchings in dense graphs. This implies that further improving the lower bound
on hub labeling size to would require a
breakthrough in the study of lower bounds on , which have resisted
substantial improvement in the last 70 years. For general distance labeling of
sparse graphs, we show a lowerbound of , where is the communication complexity of the
Sum-Index problem over . Our results suggest that the best achievable
hub-label size and distance-label size in sparse graphs may be
for some
Is My Exercise Partner Similar Enough? Partner Characteristics as a Moderator of the Köhler Effect in Exergames
Objective: Recent research has shown the Köhler motivation gain effect (working at a task with a more capable partner where one's performance is indispensable to the group) leads to greater effort in partnered exercise videogame play. The purpose of this article was to examine potential moderators of the Köhler effect by exploring dissimilarities in one's partner's appearance, namely, having an older partner (compared with a same-age partner) and having a heavier-weight partner (compared with a same-weight partner).
Subjects and Methods: One hundred fifty-three male and female college students completed a series of plank exercises using the “EyeToy: Kinetic™” for the PlayStation® 2 (Sony, Tokyo, Japan). Participants first completed the exercises individually and, after a rest, completed the same exercises with a virtually present partner. Exercise persistence, subjective effort, self-efficacy beliefs, enjoyment, and intentions to exercise were recorded and analyzed.
Results: A significant Köhler motivation gain was observed in all partner conditions (compared with individual controls) such that participants with a partner held the plank exercises longer (P<0.001) and reported higher subjective effort (P<0.01). These results were unmoderated by partner's age and weight, with one exception: Males tended to persist longer when paired with an obese partner (P=0.08).
Conclusions: These results suggest that differences in age and weight do not attenuate the Köhler effect in exergames and may even strengthen it
The QSO evolution derived from the HBQS and other complete QSO surveys
An ESO Key programme dedicated to an Homogeneous Bright QSO Survey (HBQS) has
been completed. 327 QSOs (Mb<-23, 0.3<z<2.2) have been selected over 555 deg^2
with 15<B<18.75. For B<16.4 the QSO surface density turns out to be a factor
2.2 higher than what measured by the PG survey, corresponding to a surface
density of 0.013+/-.006 deg^{-2}. If the Edinburgh QSO Survey is included, an
overdensity of a factor 2.5 is observed, corresponding to a density of
0.016+/-0.005 deg^{-2}. In order to derive the QSO optical luminosity function
(LF) we used Monte Carlo simulations that take into account of the selection
criteria, photometric errors and QSO spectral slope distribution. The LF can be
represented with a Pure Luminosity Evolution (L(z)\propto(1+z)^k) of a two
power law both for q_0=0.5 and q_0=0.1. For q_0=0.5 k=3.26, slower than the
previous Boyle's (1992) estimations of k=3.45. A flatter slope beta=-3.72 of
the bright part of the LF is also required. The observed overdensity of bright
QSOs is concentrated at z<0.6. It results that in the range 0.3<z<0.6 the
luminosity function is flatter than observed at higher redshifts. In this
redshift range, for Mb<-25, 32 QSOs are observed instead of 19 expected from
our best-fit PLE model. This feature requires a luminosity dependent luminosity
evolution in order to satisfactorily represent the data in the whole 0.3<z<2.2
interval.Comment: Invited talk in "Wide Field Spectroscopy" (20-24 May 1996, Athens),
eds. M. Kontizas et al. 6 pages and 3 eps figures, LaTex file, uses epfs.sty
and crckapb.sty (included
Electronic Structure and Lattice dynamics of NaFeAs
The similarity of the electronic structures of NaFeAs and other Fe pnictides
has been demonstrated on the basis of first-principle calculations. The global
double-degeneracy of electronic bands along X-M and R-A direction indicates the
instability of Fe pnictides and is explained on the basis of a tight-binding
model. The de Haas-van Alphen parameters for the Fermi surface (FS) of NaFeAs
have been calculated. A spin density wave (SDW)
instead of a charge density wave (CDW) ground state is predicted based on the
calculated generalized susceptibility and a criterion
derived from a restricted Hatree-Fock model. The strongest electron-phonon
(e-p) coupling has been found to involve only As, Na z-direction vibration with
linear-response calculations. A possible enhancement mechanism for e-p coupling
due to correlation is suggested
Three body problem in a dilute Bose-Einstein condensate
We derive the explicit three body contact potential for a dilute condensed
Bose gas from microscopic theory. The three body coupling constant exhibits the
general form predicted by T.T. Wu [Phys. Rev. 113, 1390 (1959)] and is
determined in terms of the amplitudes of two and three body collisions in
vacuum. In the present form the coupling constant becomes accessible to
quantitative studies which should provide the crucial link between few body
collisions and the stability of condensates with attractive two body forces
Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties
We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early–Mid Holocene, the period of maximum summer monsoon. Hematite/goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering
A Contribution to the Scanning Electron Microscope Based Microcharacterization of Semi-Insulating Gallium Arsenide Substrates
The macroscopic behaviour of semiconducting materials is determined by the distribution of microscopic defects like dislocations, impurities and intrinsic defects. Therefore, microanalytical methods are necessary to control the influence of technological process parameters on the materials properties. In the case of GaAs substrates, measurements of the cathodoluminescence (CL) and the electron beam induced voltage (EBIV) as well as the new charging technique seem to be promising methods to perform this task. CL-micrographs of as-grown GaAs substrates show bright cellular structures, which correspond to dislocation networks. Comparative investigations by use of the new charging contrast technique indicate an increased conductivity in the bright areas. CL-measurements of annealed substrates reveal additional characteristic island-like structures in the cell interior. Both, cellular and island-like structures can also be visualized by the EBIV technique. These results can be explained by a homogeneous conductivity and an inhomogeneous distribution of the excess carrier lifetime
- …