132 research outputs found

    Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films

    Full text link
    Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter

    Quantum Optimization Problems

    Full text link
    Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for an NP optimization problem that searches an optimal value among exponentially-many outcomes of polynomial-time computations. This paper expands his framework to a quantum optimization problem using polynomial-time quantum computations and introduces the notion of an ``universal'' quantum optimization problem similar to a classical ``complete'' optimization problem. We exhibit a canonical quantum optimization problem that is universal for the class of polynomial-time quantum optimization problems. We show in a certain relativized world that all quantum optimization problems cannot be approximated closely by quantum polynomial-time computations. We also study the complexity of quantum optimization problems in connection to well-known complexity classes.Comment: date change

    Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD

    Full text link
    DIS on a two nucleon system in the regge limit is considered. In this framework a review is given of a pQCD approach for the computation of the corrections to the inclusive one jet production cross section at finite number of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of "Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc

    Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells

    Get PDF
    Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6% and the longest operational lifetime, T S80, of ≈300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 − x Brx perovskite solar cells

    Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO

    Full text link
    Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is presented in a framework of Heisenberg model. We have obtained an experimental absolute value of the paramagnetic spin susceptibility of CuO by subtracting the orbital susceptibility separately from the total susceptibility through the 63^{63}Cu NMR shift measurement, and compared directly with the theoretical predictions. The result is best described by a 1D S=1/2S=1/2 antiferromagnetic Heisenberg (AFH) model, supporting the speculation invoked by earlier authors. We also present a semi-quantitative reason why CuO, seemingly of 3D structure, is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure

    High Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells

    Get PDF
    In this research instrument article, the capabilities and details of a high throughput aging system for parallel maximum power point tracking MPPT of perovskite solar cells PSCs , capable of assessing the operational stability of a large number of devices, are presented. The intention is to provide insights into the machine and the development process to engineers who want to create a similar system and eventually make MPPT stability testing of PSCs a standard procedur

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Enhanced Self Assembled Monolayer Surface Coverage by ALD NiO in p i n Perovskite Solar Cells

    Get PDF
    Metal halide perovskites have attracted tremendous attention due to their excellent electronic properties. Recent advancements in device performance and stability of perovskite solar cells PSCs have been achieved with the application of self assembled monolayers SAMs , serving as stand alone hole transport layers in the p i n architecture. Specifically, phosphonic acid SAMs, directly functionalizing indium tin oxide ITO , are presently adopted for highly efficient devices. Despite their successes, so far, little is known about the surface coverage of SAMs on ITO used in PSCs application, which can affect the device performance, as non covered areas can result in shunting or low open circuit voltage. In this study, we investigate the surface coverage of SAMs on ITO and observe that the SAM of MeO 2PACz [2 3,6 dimethoxy 9H carbazol 9 yl ethyl]phosphonic acid inhomogeneously covers the ITO substrate. Instead, when adopting an intermediate layer of NiO between ITO and the SAM, the homogeneity, and hence the surface coverage of the SAM, improve. In this work, NiO is processed by plasma assisted atomic layer deposition ALD with Ni MeCp 2 as the precursor and O2 plasma as the co reactant. Specifically, the presence of ALD NiO leads to a homogeneous distribution of SAM molecules on the metal oxide area, accompanied by a high shunt resistance in the devices with respect to those with SAM directly processed on ITO. At the same time, the SAM is key to the improvement of the open circuit voltage of NiO MeO 2PACz devices compared to those with NiO alone. Thus, the combination of NiO and SAM results in a narrower distribution of device performance reaching a more than 20 efficient champion device. The enhancement of SAM coverage in the presence of NiO is corroborated by several characterization techniques including advanced imaging by transmission electron microscopy TEM , elemental composition quantification by Rutherford backscattering spectrometry RBS , and conductive atomic force microscopy c AFM mapping. We believe this finding will further promote the usage of phosphonic acid based SAM molecules in perovskite P
    corecore