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Experimental studies of Chebbi et al. [1] on fatigue loading of fiber-reinforced polymers have shown that there is a phase
of stable stiffness decrease prior to growing fatigue cracks. Modeling this stiffness degradation is an essential step in under-
standing fatigue effects of these materials.

The constitutive behavior of short-fiber reinforced polymers depends on numerous factors, such as fiber-volume content,
the aspect ratio of the fibers, the fiber-orientation tensor and the loading direction. Accounting for these influence factors on
a purely experimental basis is very time and resource demanding.

As a remedy, we follow a multi-scale approach for simulating the fatigue-damage evolution in short-fiber reinforced
polymers. Using a simple damage model for the polymer matrix, the model inherently accounts for the influence of the fiber
micro-structure through homogenization. We show that the stiffness degradation predicted by this model is of anisotropic
nature and depends strongly on loading direction and fiber-orientation tensor.

Due to its specific structure, the model permits a straightforward model-order-reduction strategy and can be efficiently
employed for component-scale simulations, see Köbler et al. [3].

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Fatigue-damage model for the polymer matrix

We present a material model for the matrix of a fiber-reinforced polymer material. The fibers are considered to be purely
linear elastic. The matrix-material model is formulated in the framework of generalized standard materials proposed by
Halphen-Nguyen [2]. The free energy potential ψ and the dissipation potential φ are defined as

ψ(ε,D) =
1

2
[η + (1−D)2]ε : C : ε+ w `2 ‖∇D‖2 and φ(D′) =

1

2α
D′2,

where ε denotes the strain tensor and the relative residual stiffness η > 0 is introduced for numerical reasons, D is the scalar
damage variable ranging from 0 (undamaged) to 1 (fully damaged), C is the initial stiffness tensor of the material, w is a
material parameter, ` is a length-scale parameter and α governs the speed of the damage evolution.

The model is a priori formulated in cycle space. We denote by (.)′ ≡ d
dN differentiation w.r.t. the cycle variable N .

The model is applied to different fiber orientations realized as representative volume elements that were generated by the
SAM algorithm, see Schneider [5]. A typical representative volume element for a uni-directional (left) and a planar-isotropic
fiber orientation, respectively, is shown in figure 1.

The model is discretized in time and space, and solved by a fast Fourier-transform based approach, see Köbler et al. [4], [3].

a) Uni-directional fiber structure b) Planar-isotropic fiber structure

Fig. 1: Two unit cells with different fiber orientations
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2 of 2 Section 8: Multiscales and homogenization

2 Stiffness degradation for different stress amplitudes and fiber orientations

After carrying out several verification steps, a representative volume with an edge length of twice a fiber length was found to
be sufficient for studying the primary stiffness degradation (loss in the effective moduli of several 10 %), see Köbler et al. [4].
A fiber is resolved by 128 voxels per length or, at a chosen aspect ratio of 20, by 6.4 voxels across the fiber diameter.

Subsequently, a study on the fiber-orientation influence on the stiffness degradation was conducted. The results for the
above shown uni-directional and planar-isotropic structures are shown in figure 2 and 3.

Figure 2 shows the dependence of the effective Young’s modulus decrease in x-, y- and z-direction subjected to loading in x-
direction. The considered second-order fiber orientations interpolate between a uni-directional (µ = 0) and a planar-isotropic
(µ = 1) second-order fiber-orientation tensor via

A(µ) = µe1 ⊗ e1 + (1− µ)1
2
(e2 ⊗ e2 + e3 ⊗ e3), µ ∈ [0, 1]. (1)

The evolution curves for different values of µ lie in between the extreme structures, i.e., for µ = 0 and µ = 1, and depend
continuously on the parameter µ.

Figure 3 depicts the evolution of the Young’s modulus bodies of the planar-isotropic and the uni-directional structure for
three different cutting planes. The decrease in loading direction, i.e. the x-direction, is the most significant for both scenarios.
The degradation processes is thus found to be of anisotropic nature.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
2

4

6

8

10

12

14

number of cycles in 106 ×N

E
ef
f
in

G
Pa

µ Eeff
x Eeff

y Eeff
z

0.00

0.25

0.50

0.75

1.00

Fig. 2: Decrease of the absolute Young’s modulus under
loading in x-direction for fiber orientations parametrized
between uni-directional and planar-isotropic
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a) x-y-plane, UD
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b) z-x-plane, UD
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c) y-z-plane, UD
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d) x-y-plane, PISO
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e) z-x-plane, PISO
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f) y-z-plane, PISO

0

30

60
90

120

150

180

210

240
270

300

330

0 2 4 6 8

E
[GPa]

first cycle
cycle 8.9 · 105
cycle 1.3 · 106

Fig. 3: Evolution of the Young’s modulus body of the uni-directional (UD,
top) and the planar-isotropic (PISO, bottom) structure for different cutting
planes

How to incorporate the presented material model into a multi-scale simulation framework is discussed in Köbler et al. [3]. This
data-driven method enables efficient computations on the component scale, predicting the stiffness degradation for engineering
applications on component scale. This is part of ongoing research.
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