39 research outputs found

    Natural Climate Solutions must embrace multiple perspectives to ensure synergy with sustainable development

    Get PDF
    To limit global warming to well below 2°C, immediate emissions reductions must be coupled with active removal of greenhouse gases from the atmosphere. “Natural Climate Solutions” (NCS) achieve atmospheric CO2 reduction through the conservation, restoration, or altered management of natural ecosystems, with enormous potential to deliver “win-win-win” outcomes for climate, nature and society. Yet the supply of high-quality NCS projects does not meet market demand, and projects already underway often fail to deliver their promised benefits, due to a complex set of interacting ecological, social, and financial constraints. How can these cross-sectoral challenges be surmounted? Here we draw from expert elicitation surveys and workshops with professionals across the ecological, sociological, and economic sciences, evaluating differing perspectives on NCS, and suggesting how these might be integrated to address urgent environmental challenges. We demonstrate that funders” perceptions of operational, political, and regulatory risk strongly shape the kinds of NCS projects that are implemented, and the locations where they occur. Because of this, greenhouse gas removal through NCS may fall far short of technical potential. Moreover, socioecological co-benefits of NCS are unlikely to be realized unless the local communities engaged with these projects are granted ownership over implementation and outcomes

    Taking stock of national climate policies to evaluate implementation of the Paris Agreement

    Get PDF
    Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries

    Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation

    No full text
    CSP and PV technologies represent energy sources with large potentials. We present cost-supply curves for both technologies using a consistent methodology for 26 regions, based on geoexplicit information on solar radiation, land cover type and slope, exploring individual potential and interdependencies. For present day, both CSP and PV supply curves start at 0.18/kWh,inNorthAfrica,SouthAmerica,andAustralia.Applyingacceptedlearningratestoofficialcapacitytargets,weprojectpricestodropto0.18/kWh, in North Africa, South America, and Australia. Applying accepted learning rates to official capacity targets, we project prices to drop to 0.11/kWh for both technologies by 2050. In an alternative "fast-learning" scenario, generation costs drop to 0.06−0.07/kWhforCSP,and0.06-0.07/kWh for CSP, and 0.09/kWh for PV. Competition between them for best areas is explored along with sensitivities of their techno-economic potentials to land use restrictions and land cover type. CSP was found to be more competitive in desert sites with highest direct solar radiation. PV was a clear winner in humid tropical regions, and temperate northern hemisphere. Elsewhere, no clear winner emerged, highlighting the importance of competition in assessments of potentials. Our results show there is ample potential globally for both technologies even accounting for land use restrictions, but stronger support for RD&D and higher investments are needed to make CSP and PV cost-competitive with established power technologies by 2050

    Stakeholder-driven scenario analysis of ambitious decarbonisation of the Russian economy

    No full text
    Climate change mitigation entails different meanings for developed and developing countries. As a major emitting, high-income, developing economy that is largely dependant on hydrocarbons, Russia currently sits in the middle of the two groups, needing not only to drastically reduce emissions but also to ensure necessary economic growth to finance decarbonisation. This study explores two mitigation scenarios, one reflecting a cautious and the other a more ambitious decarbonisation pathway for Russia. These scenarios are co-created with a group of 135 national stakeholders, who inform the underlying assumptions based on their perceptions, expectations, and reservations: the more conservative scenario reflects the average of all input, while the ambitious scenario represents the optimistic end of the stakeholder input range. The two scenarios are modelled in CONTO, an input-output system of interconnected macro-structural calculations at the national level, to analyse the interplay between Russia's economy and decarbonisation progress, shedding light on the implications of mitigation for socioeconomic development. We find that, even for a country as dependant on hydrocarbons and under the most ambitious pathway that is still within experts’ realistic reach, Russia can achieve drastic reduction in absolute emissions and reach net-zero closely after 2050, while also achieving positive economic development in the long run. We highlight the need to prioritise a diverse set of mitigation options currently available and relevant to the Russian context, including energy efficiency and intensity improvements, electrification, and nuclear power, as well as to exploit the large potential lying within the Russian ecosystem's carbon sinks
    corecore